
MIT三人团队:用Transformer解决经验贝叶斯问题,比经典方法快100倍
MIT三人团队:用Transformer解决经验贝叶斯问题,比经典方法快100倍Transformer 很成功,更一般而言,我们甚至可以将(仅编码器)Transformer 视为学习可交换数据的通用引擎。由于大多数经典的统计学任务都是基于独立同分布(iid)采用假设构建的,因此很自然可以尝试将 Transformer 用于它们。
Transformer 很成功,更一般而言,我们甚至可以将(仅编码器)Transformer 视为学习可交换数据的通用引擎。由于大多数经典的统计学任务都是基于独立同分布(iid)采用假设构建的,因此很自然可以尝试将 Transformer 用于它们。
Diffusion Transformer模型模型通过token粒度的缓存方法,实现了图像和视频生成模型上无需训练的两倍以上的加速。
当前的 AI 领域,可以说 Transformer 与扩散模型是最热门的模型架构。也因此,有不少研究团队都在尝试将这两种架构融合到一起,以两者之长探索新一代的模型范式,比如我们之前报道过的 LLaDA。不过,之前这些成果都还只是研究探索,并未真正实现大规模应用。
当DeepSeek引发业界震动时,元始智能创始人彭博正专注于一个更宏大的愿景。
进入到 2025 年,视频生成(尤其是基于扩散模型)领域还在不断地「推陈出新」,各种文生视频、图生视频模型展现出了酷炫的效果。其中,长视频生成一直是现有视频扩散的痛点。
谷歌首席科学家Jeff Dean与Transformer作者Noam Shazeer在一场访谈中不仅揭秘了让模型速度提升三倍的低精度计算技术,分享了「猫神经元」等早期AI突破的背后故事,还大胆畅想了AI处理万亿级别Token、实现「1000万倍工程师」的可能性。
近年来,随着扩散模型和 Transformer 技术的快速发展,4D 人体 - 物体交互(HOI)的生成与驱动效果取得了显著进展。然而,当前主流方法仍依赖 SMPL [1] 这一人体先验模型来生成动作。
YOLO 系列模型的结构创新一直围绕 CNN 展开,而让 transformer 具有统治优势的 attention 机制一直不是 YOLO 系列网络结构改进的重点。这主要的原因是 attention 机制的速度无法满足 YOLO 实时性的要求。
Transformer论文八位作者之一Llion Jones创立的Sakana AI发布重磅成果——全球首个「AI CUDA工程师」!它能将PyTorch代码自动转换为高度优化的CUDA内核,速度比PyTorch原生实现快10-100倍。
Transformer 架构在过去几年中通过注意力机制在多个领域(如计算机视觉、自然语言处理和长序列任务)中取得了非凡的成就。然而,其核心组件「自注意力机制」 的计算复杂度随输入 token 数量呈二次方增长,导致资源消耗巨大,难以扩展到更长的序列或更大的模型。