
150B token从头训练,普林斯顿Meta发布完全可微MoE架构Lory
150B token从头训练,普林斯顿Meta发布完全可微MoE架构Lory前几天,普林斯顿大学联合Meta在arXiv上发表了他们最新的研究成果——Lory模型,论文提出构建完全可微的MoE模型,是一种预训练自回归语言模型的新方法。
来自主题: AI技术研报
9755 点击 2024-05-20 16:10
前几天,普林斯顿大学联合Meta在arXiv上发表了他们最新的研究成果——Lory模型,论文提出构建完全可微的MoE模型,是一种预训练自回归语言模型的新方法。
20 世纪 90 年代,长短时记忆(LSTM)方法引入了恒定误差选择轮盘和门控的核心思想。三十多年来,LSTM 经受住了时间的考验,并为众多深度学习的成功案例做出了贡献。然而,以可并行自注意力为核心 Transformer 横空出世之后,LSTM 自身所存在的局限性使其风光不再。
大神最新论文刚刚挂上arXiv,还是热乎的:解构扩散模型,提出一个高度简化的新架构l-DAE(小写的L)。
该算法现已在GitHub上开源,相关论文公布在ARXIV。近日,蚂蚁集团开源了一套新算法,可帮助大模型在推理时,提速2至6倍,引起业内关注。
爆火社区的Mixtral 8x7B模型,今天终于放出了arXiv论文!所有模型细节全部公开了。