
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。
在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。
最近,这家由前 Meta 和世嘉老兵组建AI游戏公司Studio Atelico,宣布完成500 万美元种子轮融资,由专AI的风投 Air Street Capital 领投,Hugging Face 核心成员 Thomas Wolf 参投,高调宣布要重新定义游戏体验 ,他们的目标,是让每个玩家都能拥有独一无二的动态世界。
Yann LeCun的AI故事,纪录片回顾了这位深度学习先驱的四十年历程。从索邦大学的孤独探索,到贝尔实验室发明卷积神经网络、推动支票识别商用,再与Hinton、Bengio共创深度学习革命,他始终坚信机器应学会学习。
本项工作提出了一种全新的生成模型:离散分布网络(Discrete Distribution Networks),简称 DDN。相关论文已发表于 ICLR 2025。
AI生成论文泛滥成灾,arXiv平台看不下去了—— 紧急升级审核机制,用自动化工具来检测AI生成内容。 Nature最新发现,原来每年竟然都有2%的论文会因为AI使用被拒?! 比如像,bioRxiv和medRxiv每天都要拒绝十多篇公式化AI手稿,每个月就高达7000多份。
Notion 可以说是最早一批在产品内落地 AI 的公司了。 2023 年 2 月就上线了 Notion AI,甚至早于 GPT-4 的发布。后续又陆续了发布了 Q&A 、Meeting Notes、企业搜索、AI for Work 等功能。
首次实现“训练-推理不对称”,字节团队提出全新的语言模型训练方法:Post-Completion Learning (PCL)。 在训练时让模型对自己的输出结果进行反思和评估,推理时却仅输出答案,将反思能力完全内化。
近年来,强化学习(RL)在大型语言模型(LLM)的微调过程中,尤其是在推理能力提升方面,取得了显著的成效。传统的强化学习方法,如近端策略优化(Proximal Policy Optimization,PPO)及其变种,包括组相对策略优化(Group Relative Policy Optimization,GRPO),在处理复杂推理任务时表现出了强大的潜力。
当前训练强大的大语言模型(LLM),就像是培养一个顶尖运动员,需要大量的、由专家(人类标注员)精心设计的训练计划和教材(高质量的标注数据)。
在今年三月份,清华 AIR 和字节联合 SIA Lab 发布了 DAPO,即 Decoupled Clip and Dynamic sAmpling Policy Optimization(解耦剪辑和动态采样策略优化)。