
五倍吞吐量,性能全面包围Transformer:新架构Mamba引爆AI圈
五倍吞吐量,性能全面包围Transformer:新架构Mamba引爆AI圈屹立不倒的 Transformer 迎来了一个强劲竞争者。在别的领域,如果你想形容一个东西非常重要,你可能将其形容为「撑起了某领域的半壁江山」。但在 AI 大模型领域,Transformer 架构不能这么形容,因为它几乎撑起了「整个江山」。
屹立不倒的 Transformer 迎来了一个强劲竞争者。在别的领域,如果你想形容一个东西非常重要,你可能将其形容为「撑起了某领域的半壁江山」。但在 AI 大模型领域,Transformer 架构不能这么形容,因为它几乎撑起了「整个江山」。
Transformer大模型工作原理究竟是什么样的?一位软件工程师打开了大模型的矩阵世界。黑客帝国中,「矩阵模拟」的世界或许真的存在。
只需不到9行代码,就能在CPU上实现出色的LLM推理性能。英特尔® Extension for Transformer创新工具包中的LLM Runtime为诸多模型显著降低时延,且首个token和下一个token的推理速度分别提升多达40倍和2.68倍,还能满足更多场景应用需求。
Transformer 架构可以说是近期深度学习领域许多成功案例背后的主力军。构建深度 Transformer 架构的一种简单方法是将多个相同的 Transformer 「块」(block)依次堆叠起来,但每个「块」都比较复杂,由许多不同的组件组成,需要以特定的排列组合才能实现良好的性能。
3D 生成是 AI 视觉领域的研究热点之一。本文中,来自 Adobe 研究院和斯坦福大学等机构的研究者利用基于 transformer 的 3D 大型重建模型来对多视图扩散进行去噪,并提出了一种新颖的 3D 生成方法 DMV3D,实现了新的 SOTA 结果。
小羊驼团队的新研究火了。他们开发了一种新的解码算法,可以让模型预测100个token数的速度提高1.5-2.3倍,进而加速LLM推理。
AGI 到底离我们还有多远?在 ChatGPT 引发的新一轮 AI 爆发之后,伯克利和香港大学的马毅教授领导的一个研究团队给出了自己的最新研究结果:包括 GPT-4 在内的当前 AI 系统所做的正是压缩。
大模型能否理解自己所说,Hinton和LeCun再次吵起来了。LeCun新论文证明,GPT-4回答问题准确率仅为15%,自回归模型不及人类。AI大佬的激战再次掀起。Hinton在线直接点名LeCun,说他对AI接管风险的看法对人类的影响微乎其微。 这意味着,他把自己的意见看得很重,而把许多其他同样有资格的专家的意见看得很轻
这个名为「先知」的初创公司,希望开发出一种可穿戴设备,让你体验在清醒梦中醒来的感觉……《盗梦空间》要成真了?
针对Transformer,谷歌DeepMind一项新的发现引起了不小争议: 它的泛化能力,无法扩展到训练数据以外的内容。