
吴恩达亲自授课,LLM当「助教」,适合初学者的Python编程课程上线
吴恩达亲自授课,LLM当「助教」,适合初学者的Python编程课程上线吴恩达教授开新课了,还是亲自授课!
吴恩达教授开新课了,还是亲自授课!
网友:学术圈该有的样子! 现在,arXiv的每篇论文,都能直接提问讨论了! 只需把URL中的arXiv替换成AlphaXiv,就能对任意一篇论文发布提问或讨论。
人到中年,想半路出家转行成机器学习工程师,可行吗?最近,这位成功转行的国外小哥用一篇干货满满的硬核博客告诉我们:完全可以!
著名AI学者、斯坦福大学教授吴恩达提出了AI Agent的四种设计方式后,Agentic Workflow(智能体工作流)立即火爆全球,多个行业都在实践智能体工作流的应用,并推动了新的Agentic AI探索热潮。
本研究评估了先进多模态基础模型在 10 个数据集上的多样本上下文学习,揭示了持续的性能提升。批量查询显著降低了每个示例的延迟和推理成本而不牺牲性能。这些发现表明:利用大量演示示例可以快速适应新任务和新领域,而无需传统的微调。
前段时间,随着 GPT-4o、Sora 的陆续问世,多模态模型在生成式方面取得的成绩无可否认,而人工智能的下一个革命性突破将从何处涌现,引起了大量学者和相关人士的关注。
大模型的下一个突破方向是什么?斯坦福大学教授吴恩达的答案是AI智能体工作流。
本周,生成式 AI 的竞争达到了新的高潮。
前不久,斯坦福大学教授吴恩达在演讲中提到了智能体的巨大潜力,这也引起了众多讨论。其中,吴恩达谈到基于 GPT-3.5 构建的智能体工作流在应用中表现比 GPT-4 要好。这表明,将目光局限于大模型不一定可取,智能体或许会比其所用的基础模型更加优秀。
前不久,斯坦福大学教授吴恩达在演讲中提到了智能体的巨大潜力,这也引起了众多讨论。其中,吴恩达谈到基于 GPT-3.5 构建的智能体工作流在应用中表现比 GPT-4 要好。这表明,将目光局限于大模型不一定可取,智能体或许会比其所用的基础模型更加优秀。