英伟达发射了首个太空AI服务器,H100已上天
英伟达发射了首个太空AI服务器,H100已上天11 月 2 日,英伟达首次把 H100 GPU 送入了太空。作为目前 AI 领域的主力训练芯片,H100 配备 80GB 内存,其性能是此前任何一台进入太空的计算机的上百倍。在轨道上,它将测试一系列人工智能处理应用,包括分析地球观测图像和运行谷歌的大语言模型(LLM)。
11 月 2 日,英伟达首次把 H100 GPU 送入了太空。作为目前 AI 领域的主力训练芯片,H100 配备 80GB 内存,其性能是此前任何一台进入太空的计算机的上百倍。在轨道上,它将测试一系列人工智能处理应用,包括分析地球观测图像和运行谷歌的大语言模型(LLM)。
当用户向大语言模型提出一个简单问题,比如「单词 HiPPO 里有几个字母 P?」,它却正襟危坐,开始生成一段冗长的推理链:
随着 AI 技术的发展,大语言模型已经越来越多地应用于人们的日常生活中。需要了解的是,现阶段大语言模型面临版权保护的实际需求:
在NeurIPS 2025论文中,来自「南京理工大学、中南大学、南京林业大学」的研究团队提出了一个极具突破性的框架——VIST(Vision-centric Token Compression in LLM),为大语言模型的长文本高效推理提供了全新的「视觉解决方案」。值得注意的是,这一思路与近期引起广泛关注的DeepSeek-OCR的核心理念不谋而合。
当大语言模型突破了 “理解与生成” 的瓶颈,Agent 迅速成为 AI 落地的主流形态。从智能客服到自动化办公,几乎所有场景都需要 Agent 来承接 LLM 能力、执行具体任务。
家人们,不知道你有没有试过,在和 AI 聊天时,冷不丁地问一句: “你刚刚在想什么?”
大语言模型(LLM)虽已展现出卓越的代码生成潜力,却依然面临着一道艰巨的挑战:如何在有限的计算资源约束下,同步提升对多种编程语言的理解与生成能力,同时不损害其在主流语言上的性能?
当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。
大语言模型(LLMs)推理能力近年来快速提升,但传统方法依赖大量昂贵的人工标注思维链。中国科学院计算所团队提出新框架PARO,通过让模型学习固定推理模式自动生成思维链,只需大模型标注1/10数据就能达到全量人工标注的性能。这种方法特别适合像金融、审计这样规则清晰的领域,为高效推理监督提供了全新思路。
当强大的多模态大语言模型应用于地球科学研究时,它面临着无法忽视的 「阿克琉斯之踵」