扩散模型奖励微调新突破:Nabla-GFlowNet让多样性与效率兼得
扩散模型奖励微调新突破:Nabla-GFlowNet让多样性与效率兼得本文作者刘圳是香港中文大学(深圳)数据科学学院的助理教授,肖镇中是德国马克思普朗克-智能系统研究所和图宾根大学的博士生,刘威杨是德国马克思普朗克-智能系统研究所的研究员,Yoshua Bengio 是蒙特利尔大学和加拿大 Mila 研究所的教授,张鼎怀是微软研究院的研究员。此论文已收录于 ICLR 2025。
本文作者刘圳是香港中文大学(深圳)数据科学学院的助理教授,肖镇中是德国马克思普朗克-智能系统研究所和图宾根大学的博士生,刘威杨是德国马克思普朗克-智能系统研究所的研究员,Yoshua Bengio 是蒙特利尔大学和加拿大 Mila 研究所的教授,张鼎怀是微软研究院的研究员。此论文已收录于 ICLR 2025。
别说什么“没数据就去标注啊,没钱标注就别做大模型啊”这种风凉话,有些人数据不足也能做大模型,是因为有野心,就能想出来稀缺数据场景下的大模型解决方案,或者整理出本文将要介绍的 "Practical Guide to Fine-tuning with Limited Data" 这样的综述。
比LoRA更高效的模型微调方法来了——
OpenAI推出GPT-4o模型微调功能。
开源大语言模型(LLM)百花齐放,为了让它们适应各种下游任务,微调(fine-tuning)是最广泛采用的基本方法。基于自动微分技术(auto-differentiation)的一阶优化器(SGD、Adam 等)虽然在模型微调中占据主流,然而在模型越来越大的今天,却带来越来越大的显存压力。
为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
在上一篇文章「Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存」中,我们介绍了Unsloth,这是一个大模型训练加速和显存高效的训练框架,我们已将其整合到Firefly训练框架中,并且对Llama3-8B的训练进行了测试,Unsloth可大幅提升训练速度和减少显存占用。
在微调大型模型的过程中,一个常用的策略是“知识蒸馏”,这意味着借助高性能模型,如GPT-4,来优化性能较低的开源模型。这种方法背后隐含的哲学理念与logos中心论相似,把GPT-4等模型视为更接近唯一的逻辑或真理的存在。
面对当前微调大模型主要依赖人类生成数据的普遍做法,谷歌 DeepMind 探索出了一种减少这种依赖的更高效方法。
我们都知道,大语言模型(LLM)能够以一种无需模型微调的方式从少量示例中学习,这种方式被称为「上下文学习」(In-context Learning)。这种上下文学习现象目前只能在大模型上观察到。比如 GPT-4、Llama 等大模型在非常多的领域中都表现出了杰出的性能,但还是有很多场景受限于资源或者实时性要求较高,无法使用大模型。