
4个月11万用户、Claude Code成了,Dogfooding该被AI公司重视起来了
4个月11万用户、Claude Code成了,Dogfooding该被AI公司重视起来了Dogfooding(内部试用) 应该被 AI 创业公司重视起来了。
Dogfooding(内部试用) 应该被 AI 创业公司重视起来了。
你有没有想过,我们正在见证软件史上最深刻的一次变革?不是什么渐进式的改进,而是一场颠覆性的革命。
小时候完成月考测试后,老师会通过讲解考试卷中吃错题让同学们在未来取得好成绩。
GTA 工作由中国科学院自动化研究所、伦敦大学学院及香港科技大学(广州)联合研发,提出了一种高效的大模型框架,显著提升模型性能与计算效率。
Kimi K2称霸全球开源模型的秘籍公开了!
我们知道,训练大模型本就极具挑战,而随着模型规模的扩大与应用领域的拓展,难度也在不断增加,所需的数据更是海量。大型语言模型(LLM)主要依赖大量文本数据,视觉语言模型(VLM)则需要同时包含文本与图像的数据,而在机器人领域,视觉 - 语言 - 行动模型(VLA)则要求大量真实世界中机器人执行任务的数据。
如何让AI像人一样,仅凭少量演示,就能稳健适应复杂多变的真实场景? 美国东北大学和波士顿动力RAI提出了HEP(Hierarchical Equivariant Policy via Frame Transfer)框架,首创“坐标系转移接口”,让机器人学习更高效、泛化更灵活。
人形机器人作为用于复杂运动控制、人机交互和通用物理智能的多功能平台,正受到前所未有的关注。然而,由于其复杂的动力学、欠驱动和多样化的任务需求,实现高效的人形机器人全身控制 (Whole-Body Control,WBC) 仍然是一项根本性的挑战。
本文的主要作者来自复旦大学和南洋理工大学 S-Lab,研究方向聚焦于视觉推理与强化学习优化。
让机器人像人一样边看边理解,来自浙江大学和vivo人工智能实验室的研究团队带来了新进展。