
算力直降97%,GPT-3存储只用20MB?!这篇直接在1.58-bit下训练模型的新论文火了
算力直降97%,GPT-3存储只用20MB?!这篇直接在1.58-bit下训练模型的新论文火了好家伙!1750亿参数的GPT-3只需20MB存储空间了?! 基于1.58-bit训练,在不损失精度的情况下,大幅节省算力(↓97%)和存储(↓90%)。
好家伙!1750亿参数的GPT-3只需20MB存储空间了?! 基于1.58-bit训练,在不损失精度的情况下,大幅节省算力(↓97%)和存储(↓90%)。
现有的深伪检测方法大多依赖于配对数据,即一张压缩图像和其对应的原始图像来训练模型,这在许多实际的开放环境中并不适用。尤其是在社交媒体等开放网络环境(OSN)中,图像通常经过多种压缩处理,导致图像质量受到影响,深伪识别也因此变得异常困难。
为了构建鲁棒的 3D 机器人操纵大模型,Lift3D 系统性地增强 2D 大规模预训练模型的隐式和显式 3D 机器人表示,并对点云数据直接编码进行 3D 模仿学习。Lift3D 在多个仿真环境和真实场景中实现了 SOTA 的操纵效果,并验证了该方法的泛化性和可扩展性。
Prime Intellect 宣布通过去中心化方式训练完成了一个 10B 模型。30 号,他们开源了一切,包括基础模型、检查点、后训练模型、数据、PRIME 训练框架和技术报告。据了解,这应该是有史以来首个以去中心化形式训练得到的 10B 大模型。
Ilya终于承认,自己关于Scaling的说法错了!现在训练模型已经不是「越大越好」,而是找出Scaling的对象究竟应该是什么。他自曝,SSI在用全新方法扩展预训练。而各方巨头改变训练范式后,英伟达GPU的垄断地位或许也要打破了。
在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。
1%的合成数据,就让LLM完全崩溃了? 7月,登上Nature封面一篇论文证实,用合成数据训练模型就相当于「近亲繁殖」,9次迭代后就会让模型原地崩溃。
构建支持和增强人类能力的AI工具,而不是试图完全取代人类。
Nature的一篇文章透露:你发过的paper,很可能已经被拿去训练模型了!有的出版商靠卖数据,已经狂赚2300万美元。然而辛辛苦苦码论文的作者们,却拿不到一分钱,这合理吗?
LLM数学水平不及小学生怎么办?CMU清华团队提出了Lean-STaR训练框架,在语言模型进行推理的每一步中都植入CoT,提升了模型的定理证明能力,成为miniF2F上的新SOTA。