AI资讯新闻榜单内容搜索-语言模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 语言模型
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。

来自主题: AI技术研报
5819 点击    2025-11-10 15:12
微信、清华连续自回归模型CALM,新范式实现从「离散词元」到「连续向量」转变

微信、清华连续自回归模型CALM,新范式实现从「离散词元」到「连续向量」转变

微信、清华连续自回归模型CALM,新范式实现从「离散词元」到「连续向量」转变

众所周知,大型语言模型(LLM)的根本运作方式是预测下一个 token(词元),能够保证生成的连贯性和逻辑性,但这既是 LLM 强大能力的「灵魂」所在,也是其枷锁,将导致高昂的计算成本和响应延迟。 可

来自主题: AI技术研报
6944 点击    2025-11-09 10:21
LLM首次达到人类语言专家水平!OpenAI o1拿下拆解句法、识别歧义、推理音律

LLM首次达到人类语言专家水平!OpenAI o1拿下拆解句法、识别歧义、推理音律

LLM首次达到人类语言专家水平!OpenAI o1拿下拆解句法、识别歧义、推理音律

这说明o1不仅能够使用语言,还能够思考语言,具备元语言能力(metalinguistic capacity )。由于语言模型只是在预测句子中的下一个单词,人对语言的深层理解在质上有所不同。因此,一些语言学家表示,大模型实际上并没有在处理语言。

来自主题: AI技术研报
7719 点击    2025-11-08 15:51
北大团队让AI学会考古!全球首个古希腊陶罐3D视觉问答数据集发布,还配了专用模型

北大团队让AI学会考古!全球首个古希腊陶罐3D视觉问答数据集发布,还配了专用模型

北大团队让AI学会考古!全球首个古希腊陶罐3D视觉问答数据集发布,还配了专用模型

现在AI都懂文物懂历史了。一项来自北京大学的最新研究引发关注:他们推出了全球首个面向古希腊陶罐的3D视觉问答数据集——VaseVQA-3D,并配套推出了专用视觉语言模型VaseVLM。这意味着,AI正在从“识图机器”迈向“文化考古Agent”。

来自主题: AI技术研报
7560 点击    2025-11-07 14:49
如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

如何自动优化领域任务的提示词?用EGO-Prompt|NeurIPS 2025

大型语言模型(LLMs)正迅速成为从金融到交通等各个专业领域不可或缺的辅助决策工具。但目前LLM的“通用智能”在面对高度专业化、高风险的任务时,往往显得力不从心。

来自主题: AI技术研报
6961 点击    2025-11-07 10:52
扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

在大语言模型(LLM)席卷各类复杂任务的今天,“测试时扩展”(Test-Time Scaling,TTS)已成为提升模型推理能力的核心思路 —— 简单来说,就是在模型 “答题” 时分配更多的计算资源来让它表现更好。严格来说,Test-Time Scaling 分成两类:

来自主题: AI技术研报
6844 点击    2025-11-06 14:59
用更一致的轨迹、更少的解码步数「驯服」掩码扩散语言模型,扩散语言模型的推理性能和效率大幅提升

用更一致的轨迹、更少的解码步数「驯服」掩码扩散语言模型,扩散语言模型的推理性能和效率大幅提升

用更一致的轨迹、更少的解码步数「驯服」掩码扩散语言模型,扩散语言模型的推理性能和效率大幅提升

扩散大语言模型得到了突飞猛进的发展,早在 25 年 2 月 Inception Labs 推出 Mercury—— 第一个商业级扩散大型语言模型,同期人民大学发布第一个开源 8B 扩散大语言模型 LLaDA,5 月份 Gemini Diffusion 也接踵而至。

来自主题: AI技术研报
8824 点击    2025-11-05 15:17
HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

大语言模型(LLM)的「炼丹师」们,或许都曾面临一个共同的困扰:为不同任务、不同模型手动调整解码超参数(如 temperature 和 top-p)。这个过程不仅耗时耗力,而且一旦模型或任务发生变化,历史经验便瞬间失效,一切又得从头再来。

来自主题: AI技术研报
10181 点击    2025-11-04 16:14
字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

现代 LLM 通常依赖显式的文本生成过程(例如「思维链」)来进行「思考」训练。这种策略将推理任务推迟到训练后的阶段,未能充分挖掘预训练数据中的潜力。

来自主题: AI技术研报
8385 点击    2025-11-04 16:12