
补齐Transformer规划短板,田渊栋团队的Searchformer火了
补齐Transformer规划短板,田渊栋团队的Searchformer火了最近几年,基于 Transformer 的架构在多种任务上都表现卓越,吸引了世界的瞩目。使用这类架构搭配大量数据,得到的大型语言模型(LLM)等模型可以很好地泛化用于真实世界用例。
最近几年,基于 Transformer 的架构在多种任务上都表现卓越,吸引了世界的瞩目。使用这类架构搭配大量数据,得到的大型语言模型(LLM)等模型可以很好地泛化用于真实世界用例。
在过去的 2023 年中,大型语言模型(LLM)在潜力和复杂性方面都获得了飞速的发展。展望 2024 年的开源和研究进展,似乎我们即将进入一个可喜的新阶段:在不增大模型规模的前提下让模型变得更好,甚至让模型变得更小。
大语言模型之大,成本之高,让模型的稀疏化变得至关重要。
视觉语言模型虽然强大,但缺乏空间推理能力,最近 Google 的新论文说它的 SpatialVLM 可以做,看看他们是怎么做的。
尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。
简单粗暴的理解,就是语言能力足够强大之后,它带来的泛化能力直接可以学习图像视频数据和它体现出的模式,然后还可以直接用学习来的图像生成模型最能理解的方式,给这些利用了引擎等已有的强大而成熟的视频生成技术的视觉模型模块下指令,最终生成我们看到的逼真而强大的对物理世界体现出“理解”的视频。
普林斯顿大学和DeepMind的科学家用严谨的数学方法证明了大语言模型不是随机鹦鹉,规模越大能力一定越大。
检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。
最近来自香港科技大学(HKUST)、南洋理工大学(NTU)与加利福尼亚大学洛杉矶分校(UCLA)的研究者们提供了新的思路:他们发现大语言模型如 ChatGPT 可以理解传感器信号进而完成物理世界中的任务。该项目初步成果发表于 ACM HotMobile 2024。
大型语言模型(LLM)的成功离不开「基于人类反馈的强化学习(RLHF)」。RLHF 可以大致可以分为两个阶段,首先,给定一对偏好和不偏好的行为,训练一个奖励模型,通过分类目标为前者分配更高的分数。