在 AI 取代人类的危机之下,一个程序员的焦虑治愈之路。
【作者有话说】2023 年对我来说是神奇的一年,我意外地从一个程序员变成了一个 AI 资讯届的“网红”,到年底时我在 X 平台的阅读量超过 1 亿,微博上的阅读量则超过 10 亿,很多人通过我的微博或者 X 了解最新的 AI 资讯、教程和 Prompt 使用技巧。而这一切其实是从我患上了 AI 焦虑症开始的。
在本文中,我将向你分享我的故事,如何患上了 AI 焦虑症,又是如何克服它,并且成功地把 AI 变成自己的得力助手,让自己成为善用 AI 的人。
OpenAI 的 ChatGPT 一经问世,我第一时间开始使用,发现它与我以前使用过的 AI 产品截然不同。它不仅理解语言能力出众,还能生成高质量的内容,甚至展现出一定的推理能力。这激起了我的极大兴趣,我开始越来越多地使用它来辅助日常工作。同时,在图像生成领域,如开源的 Stable Diffusion 和商业化的 Midjourney,也展现出了惊人的进步。AI 变成了非常热门的话题,于是我开始越来越多地关注 AI 领域。
但随着我关注越多,我发现自己变得越来越焦虑,因为 AI 领域发展速度非常快,每天都有很多新的 AI 产品推出,隔一段就有一次大的升级,比如像 GPT-4 的发布、Midjourney V5 的推出、文本生成视频、多模态等等。于是我每天要花大量的时间去了解各种 AI 资讯,生怕错过什么重要的信息,随之而来的是注意力不容易集中,睡眠不好。
并且,我发现像我这样焦虑的人不在少数,尤其是那句流传甚广的“替代你的不是 AI,是善用 AI 的人”,让很多人像我一样患上了 AI 焦虑症,担心没有跟上这波 AI 浪潮会被淘汰。我还学习到一个新名词叫 FOMO(The fear of missing out,错失恐惧症),意思就是害怕错过了重要的机会。
我开始探究自己焦虑的源头,我的 AI 焦虑症可能有几种来源:
一种来源于对 AI 的恐惧,担心被 AI 被取代,担心那些用 AI 的人取代自己,导致自己失业。尤其是现在就业形势不算太好,媒体又有意无意在夸大 AI 的能力,如果对 AI 不了解很容易被误导,陷入焦虑之中。
一种来源于社交需要,现在 AI 这么热门,大家都在谈论 AI,如果我不懂 AI 是不是就落伍了?会不会被孤立?
一种来源于担心错失机会,我这一代人赶上了好时候,2000 年左右互联网浪潮开始,2010 年左右迎来了移动互联网的浪潮,很多幸运儿在这几次浪潮中抓住机会,赢得了巨大的成功。但我并没有抓住什么机会,现在 AI 这么火热,是不是意味着 AI 的浪潮要开始了,错过了前面几次机会,不能再错过 AI 的机会!
正是这些原因,让我患上了 AI 焦虑症。要克服对 AI 的焦虑,还需要从根源上下功夫。我针对自己的情况,给自己开了几剂药方:
学习 AI,了解 AI
我们对 AI 的恐惧,很大程度上是来源于对 AI 的不了解。
我以前一直以为 AI 是个高深莫测的领域,需要数学特别好,或是经过很多年专业系统的学习,所以我从来没有尝试了解过 AI。但我们普通人真的需要学习那么多底层知识才能用好 AI 吗?
改变的契机在今年初时,我看到有人做了这样一个应用:上传一个文档,就能基于文档的内容进行问答,简直像魔法一样,太神奇了!但我这次并没有望而却步,而是尝试学习了解一下它是怎么工作的。
好在现在很多信息都是可以公开获取的,开源项目也很丰富,所以我很快找到了类似的开源项目实现,并按图索骥找到了相关的技术文档,尝试搞明白它的原理(参见图 1),学习到检索增强生成(RAG)、Embedding 这些专业知识,知道原来有向量存储、相似度检索这回事儿。这个学习的过程有一点痛苦,但比我最初想象的容易得多,也因此收获满满。
图 1 这是我当时写的一篇关于文档问答应用工作原理 [1] 的配图
不过我也给自己划定了一个范围:那就是重点了解应用层面的知识,不去深入太过底层的原理,类似于学前端时,学会怎么用 React,而不必去知道其底层实现。因为一方面我还没自大到仅仅几个月的学习,就可以掌握高深的 AI 底层原理,另一方面对我来说,能了解并使用就够了。
后来当很多类似的文档问答产品出来时,我不但不会焦虑,还能帮助去科普,它背后的原理是什么。我也明白其实对于普通人而言,并不需要去学所有 AI 底层知识,稍微了解其原理,重点学习如何应用就很好了。
不如动手试试
如果说对文档问答类 AI 产品的焦虑只是源于不了解,那么当有人演示用自然语言就能写出一个炫酷的网页游戏时,又让我产生了担心 AI 会让我被替代的恐惧。
但我觉得与其焦虑,不如动手试试,看它是不是真有那么厉害。于是我尝试着去做了简单的游戏,但发现实际效果并不理想,原来做出炫酷 Demo 的人,演示的都是那些预训练过的经典游戏代码。这些游戏对于大语言模型来说,已经被反复训练过,很容易就生成出相关的代码,但如果是一个从来没有训练过的游戏,很难生成满意的结果。
类似的我还测试过自然语言生成前端页面(参见图 2),理解了其背后的原理是借助大模型,按照要求生成 HTML、CSS 和 JS 代码。如果只是简单地生成演示页面,是没有什么问题的,但如果要特定要求的页面、复杂的站点,差距还是比较大。因为目前大模型还有一些局限,比如上下文长度不能太长,意味着无法生成大量代码或基于很多代码去重新修改生成;比如代码生成的质量很依赖于 Prompt 是怎么写的,如果你本来就很懂前端,能够提出很具体的要求,但如果不懂前端,那么很多时候就无法很好地操控 AI 去帮你完成任务。
图 2 make real [2] ,一个可以将草图生成网页代码的开源程序
通过实际动手去试试,我发现短期内并不用担心程序员会被替代,因为现在 AI 还做不到你给个需求,就能完整地生成一个项目,还是需要程序员去对需求进行分析,进而根据需求设计架构、分解成模块、生成代码,依然还要测试部署。也许某个代码模块 AI 可以帮助生成或优化,但还是需要程序员去协助编译,出错了去修复。
避免从一个极端到另一个极端
同时我也发现,有些人跟我一样,因为对 AI 的焦虑,所以去了解、学习 AI,但发现 AI 的表现达不到预期后,马上走到另一个极端 —— 对 AI 不屑一顾,认为不过尔尔。
虽然我也觉得 AI 现在的能力还不够强,但保持对 AI 的持续学习和实践,是一个更为理性的选择。
因为在我看来,现阶段像 GPT-4 这样最先进的模型,已经表现出很强的语言能力和初步的推理能力,这是很了不起的成就。对于普通人而言,语言是非常重要的能力,再加上简单的推理能力,已经可以做以前不可能做的事情。
另外一点就是大模型的规模化定律(Scaling Laws)目前尚未失效,即模型训练的文本量和神经网络中的参数越多,模型能力越强。现在模型的规模还没有到极限,意味着大模型的能力还有进步的空间。如果再有技术上的突破,就预示着我们离真正的通用人工智能(AGI)并非遥不可及。
基于这些原因,我一直对 AI 未来的发展持乐观态度,应该会像 PC 时代的摩尔定律一样,每隔一段时间,就能看到 AI 技术的巨大飞跃。在这个过程中,如果我们能保持学习,善用 AI,不仅不会焦虑,甚至可以借助 AI 做更多有价值的事。
知道 AI 的强项和局限在哪里
面对再强大的对手,如果知己知彼,自然能百战百胜。当我们了解了 AI 的强项和局限,就不用担心会被 AI 战胜,相反能让它为我们所用。
以大语言模型为例,我总结下来它的强项在于:
但也有一些明显局限:
清楚了它的强项和局限,那么我不仅不用焦虑,还能让扬长避短。
邹欣老师(CSDN &《新程序员》首席内容顾问)给过一个很好的建议:有一个社交圈子来交流,也是避免焦虑的一个好方法。
留心观察一下,发现像我这样患有 AI 焦虑症的不在少数,既然大家都焦虑反而就觉得没那么焦虑了。平时还可以一起交流一些 AI 资讯和学习心得,对于提升自己使用 AI 的水平很有帮助。
我这些年养成的一个习惯就是会把日常学习到的知识写下来分享出去,不仅能帮助我更好地梳理清楚模糊的知识细节,还可以收到许多有价值的反馈。在学习 AI 的过程中也是如此,我会将看到的有价值的资讯和学习到的知识都写下来分享出去,尤其是现在关注 AI 的人非常多,我分享的很多内容对他们来说也是很有价值的,所以能收到很多积极的反馈,有感谢的,有指正错误的,这些都让我受益良多,也很大程度地帮助我缓解了 AI 的焦虑。
既然“替代你的不是 AI,是善用 AI 的人”让我焦虑,那么应对它最好的办法,就是把自己变成善用 AI 的人。
所以今年初开始,我开始积极地将 AI 应用于日常工作和生活。例如,在标准化写作、编程和翻译方面,我都尝试利用 AI 来提高效率。
像日常的邮件、工作中的任务描述、文档,都会借助 ChatGPT 帮我编写。尤其是像我英文不够好,以前写正式的英文邮件、文档,要花不少时间去校对语法和拼写,现在借助 ChatGPT,我把要写的内容用中文夹杂英文简要地描述好,就能帮我生成一篇高质量的英文内容,又快又好。
写代码的话,由于受上下文长度的限制,一个复杂项目的代码,AI 是无能为力的,但辅助生成代码、完成某个小模块或函数还是没问题的。我用得最多的就是 GitHub Copilot,在写代码时像一个“副驾驶”一样,通常只要写上良好的注释,就能帮我生成代码,尤其是一些我以前不喜欢写的测试代码,现在借助 AI 能轻松完成。甚至有时候涉及到复杂算法的,也能帮我完成,这极大地提升了我的开发效率。
要论 AI 对我最大的帮助,还是翻译。
我日常有机会接触到很多一手的文章或视频,但都是英文的,而对于我微博上的很多读者来说,他们更习惯看中文内容,尤其是翻译质量好的内容。在 ChatGPT 之前我没有条件做这事,因为我发现谷歌翻译这类的翻译结果并不理想,需要花很多时间校对。但在 GPT-4 推出后,我发现翻译质量上比谷歌翻译等专业翻译服务要高,而且定制化强,于是开始做了很多这方面的尝试。
首先是对文本的翻译,我发现 ChatGPT 在第一次翻译时,质量并没有太高,还有很明显的翻译痕迹,但如果让 ChatGPT 在第一次翻译后,再对内容润色一遍,那么读起来就很通顺,几乎看不出机器翻译的痕迹。借助这个方法,我日常可以大量地将优质的英文内容翻译为中文,只要稍作校对就可以(参见图 3)。
图 3 我日常用来翻译英文科技文章的 GPT
接着是字幕翻译,由于字幕不仅有文本,还有时间轴。所以翻译英文字幕,不仅需要翻译英文文本为中文,还要基于翻译后的语序和长度,重新调整中文字幕的时间轴和文本拆分。所以以前像翻译字幕这种事,都有一个字幕组来做,有人专门翻译,有人重新对时间轴。而现在的大模型兼有语言和推理能力,不仅可以翻译,还能对时间轴,这就极大地提升了字幕翻译的效率。所以在今年一年里,我借助 AI 的帮助,一个人翻译了将近 100 多部教学视频,这在以前是不敢想象的。
图 4 我日常用 AI 来翻译字幕的脚本程序
不知不觉,我从一个不懂 AI 和对 AI 充满焦虑的人,变成了一个不再对 AI 焦虑,在日常生活中大量应用 AI 的人。
在 2023 年的 11 月份,OpenAI 的董事会突然开除了 CEO Sam Altman,很多人猜测是因为 OpenAI 已经研发出具有高度智能的 AI 系统,这再次引起了很多人对 AI 的焦虑甚至恐惧。但我已经不再对它焦虑,因为经过我的学习和实践,我很清楚现阶段的 AI 技术背后的原理和局限。
我相信我们每个人都可以去学习和了解 AI,不必焦虑它会取代我们,反而可以把 AI 作为工具提升我们的生产力,你我都可以成为善用 AI 的人。
相关资料:
[1] https://www.weibo.com/detail/4875446737175262
[2] https://github.com/tldraw/make-real
注:本文精选自《新程序员 007:大模型时代的开发者》。
文章来自于微信公众号 “CSDN(ID:CSDNnews)”,作者 “宝玉”
【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。
项目地址:https://github.com/microsoft/graphrag
【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。
项目地址:https://github.com/langgenius/dify
【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。
项目地址:https://github.com/infiniflow/ragflow/tree/main
【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目
项目地址:https://github.com/phidatahq/phidata
【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。
项目地址:https://github.com/TaskingAI/TaskingAI
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0