陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现
5821点击    2025-03-11 17:55

o3-mini成功挑战图论中专家级证明,还得到了陶哲轩盛赞。经过实测后,他总结称LLM并非是数学研究万能解法,其价值取决于问题得性质和调教AI的方式。


o3-mini竟然已经进化到,能秒解图论难题的程度了?!


今天,陶哲轩在社交平台上,再次分享了自己用AI辅助数学证明的经典用例和感想。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


他以Ruzsa-Szemeredi的「三角移除引理」(Triangle Removal Lemma)为例,目标是证明一个对专家来说图论中的标准结论:


一个由n个顶点、n个诱导匹配构成的图,其边数仅为o(n^2)


若要证明这个定理,有三种选择:用笔和纸自己手动推导;通过网络搜索找答案;或借助大模型。


在此,陶哲轩明智地采用了第三种方式,让o3-mini去证明。


结果令人眼前一亮,几秒钟内,AI给出了一个正确的答案,一个精准且清晰的推导过程,完美阐释出「三角移除引理」如何限制了边数。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


那么,o3-mini是如何做到的呢?


ChatGPT秒解图论难题


陶哲轩向o3-mini发起提问:


Ruzsa-Szemerédi三角形移除引理表明,如果一个有n个顶点的图(当n很大时)仅包含o(n^3)个三角形,则可以通过移除o(n^2)条边使其变为无三角形图。显然,该引理隐含了这样一个结论:如果一个n顶点的图是n个诱导匹配(induced matching)的并集,则其总边数仅为o(n^2)。你知道如何从前者推出后者吗?


经过30秒思考过程,o3-mini给出了证明的关键思路——


通过在辅助图中将诱导匹配的边「编码」为三角形,然后再应用三角形移除引理。


而大致思路是,首先诱导匹配的并集,构造一个辅助的三部图,然后关联边数和三角形数,最后再应用三角形移除引理。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


这个答案,让陶哲轩非常满意。


「AI能够满足我的即时需求,这表明LLM在快速提供某一领域内标准论证的细节方面,是一个优秀的用例,用户可以随后验证其正确性」。


紧接着,他进一步询问模型,关于三角移除引理的另一标准推论—— Ruzsa-Szemeredi (6,3)定理。


该定理涉及三均匀超图,在特定禁止配置下的规模限制。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


这一次,模型的表现却不尽如人意。


最初的回答虽抓住了用超图编码一个图的总体思路,但缺乏所有的关键细节。


当陶哲轩进一步追问时,它没有提到两个最重要的思路:


  • 利用 (6,3) 条件来限制编码图中不需要的三角形
  • 最初简化为线性超图的步骤


经过多次提示和明确的引导下,o3-mini才逐渐补全思路,最终给出了一个基本正确的推导证明。


陶哲轩表示,自己之所以能够给出提示,也是因为事先通过上网搜索查阅了证明。


如下是,为了得到详细证明,更加明确的提示。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


个人感想


通过这次亲测,陶哲轩对LLM在数学研究中的能力,给出了自己的观察。


他表示,对于那些教科书级别的标准问题,模型的表现近乎完美,几乎无需干预。


这些答案基本可以从维基百科、StackOverflow等现有资源中找到。


然而,当问题转向研究级别,或较少被讨论的领域时,模型的成功率显著下降。


他将LLM的能力概括为两种状态:


一种是在宽泛指导下仍能提供有价值的帮助;另一种则需要用户详细引导,甚至更高计算资源才能逐步完善答案。


最强大的模型或许更倾向于前者,但整体而言,随着问题复杂度和岭门程度增加,LLM的表现逐渐减弱。


AI辅助数学研究,提前到来


在评论区,网友们讨论一片,有人疑惑地表示,「尽管网络搜索质量有所下降,但它仍比AI工具在最好和最坏的情况下,都能提供准确的结果。那么,这种工具的意义何在」?


他表示,自己唯一能想到使用这种工具的理由,便是用它来获取新事物的灵感。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


陶哲轩解释道,「目前,我认为LLM查询在最佳情况下优于网页搜索,因为其响应速度更快且更符合需求;相比于构造搜索查询、浏览多个搜索结果以判断哪些最有价值,然后将最佳结果的答案转换为自己应用所需的符号和上下文,创建提示并阅读LLM的响应,所需的脑力负担更小。然而,在最坏情况下,这类查询可能比传统搜索更耗费心力」。


因此,目前这两种方法在实用性上大致相当,至少对于查找相对知名的技术性论证而言。


当前的最佳解决方案似乎是采用混合方法,即首先向LLM提问,但如果其答案不能立即令人满意,则切换到其他方法(如网页搜索),或者利用网页搜索提供的线索进一步向LLM提问。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


这位网友再次问道,「即使在最佳情况下,用户仍需具备足够的知识来判断给出的解决方案是否正确且可信。在GenAI出现之前,这并不是一个问题。提升网页搜索的可用性或许会更加有用。尽AI可能会改进,但我仍然持悲观态度。在我看来,当前的AI产品总体上弊大于利,我们可能永远无法完全恢复。


陶哲轩表示,事实上,我认为互联网(尤其是社交媒体)上不可靠信息的泛滥早于生成式AI的兴起,尽管AI机器人和「深度伪造」图像确实加剧了这一问题。


无论是否有生成式AI,独立验证信息的能力正变得愈发重要。(需要注意的是,人类创作的数学也可能包含错误,即便没有AI介入,来自互联网的随机证明仍然需要人工验证。)


然而,在纯数学领域,这个问题或许有一个潜在的解决方案,即要求生成式AI通过形式化证明助手来验证其输出,以确保正确性。


目前,这方面的实验仅能解决低阶本科水平的问题(例如计算定积分),尚不清楚LLM生成的数学答案中涉及的高阶概念是否可以通过这种形式语言捕捉。


陶哲轩认为,要求LLM至少形式化验证其部分细节,能够显著提高其整体可靠性。(类似的现象已在LLM处理数学奥林匹克竞赛类型问题时被观察到——相比于直接生成答案,模型若采用更可靠的语言(如 Python)编写代码来求解问题,通常能显著优于纯LLM方法。)


理想情况下,人类创作的数学也应当越来越多地采用形式验证;但我预计AI生成或AI辅助的数学研究会提前实现这一点。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


当然,评论区也有质疑大模型推理能力的网友,认为LLM并非是推理模型,而是随机文本生成器。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现


参考资料:

https://mathstodon.xyz/@tao/114139125505827565


文章来自于“新智元”,作者“桃子”。


陶哲轩亲测点赞,o3-mini秒证图论难题!专家级证明完整呈现

关键词: AI , o3-mini , AI数学 , 人工智能
AITNT-国内领先的一站式人工智能新闻资讯网站