ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
一句指令自动玩手机,网上冲浪神器Mobile-Agent来了
7555点击    2024-02-03 12:44

一直以来,让 AI 成为手机操作助手都是一项颇具挑战性的任务。在该场景下,AI 需要根据用户的要求自动操作手机,逐步完成任务。


随着多模态大语言模型(Multimodal Large Language Model,MLLM)的快速发展,以 MLLM 为基础的多模态 agent 逐渐应用于各种实际应用场景中,这使得借助多模态 agent 实现手机操作助手成为了可能。


本文将介绍一篇最新的利用多模态 agent 实现 AI 操作手机的研究《Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception》。



  • 论文地址:https://arxiv.org/abs/2401.16158v1
  • 项目地址:https://github.com/X-PLUG/MobileAgent


能力展示


首先为大家介绍 Mobile-Agent 可以自动做哪些有趣的任务。


下面是一个在 YouTube 里找相关视频并发表评论的例子,用户的要求是在 YouTube 里搜索视频,找到一个和某个明星相关的视频,然后发表评论。在整个过程中,Mobile-Agent 没有出现任何错误、不必要或无效的操作,完美地完成了任务。



接下来是一个操作多 App 的例子,用户的要求是先去查询今天的比赛结果,然后根据结果写一个新闻。这个任务的挑战性在于,前后要使用两个 App 完成两个子任务,并且需要将第一个子任务的结果作为第二个子任务的输入。Mobile-Agent 首先完成了查询比赛结果,随后退出浏览器并打开笔记,最后将比赛结果精准地写出,并以新闻的方式呈现。



最后展示一个短视频平台评论的例子,用户的需求是在短视频平台中刷视频,如果刷到了宠物猫相关的视频,就点一个喜欢。在该例子中,Mobile-Agent 出现了两次错误的操作(红色字体指示),然而 Mobile-Agent 及时感知到了错误并且采取了补救措施,最终也完成了任务。



从上述的例子中可以看出,Mobile-Agent 有以下三个能力:


(1)操作定位。对于需要点击特定图标和文本的操作,Mobile-Agent 能够准确点击到对应的位置。

(2)自我规划。根据用户指令和当前屏幕截图,Mobile-Agent 能够自动规划每一步的任务,直到任务完成。

(3)自我反思。如果出现了错误操作或者无效操作,Mobile-Agent 能够及时发现问题并进行补救。


方法


这里详细介绍一下 Mobile-Agent 的设计思路,展示上述三个能力是如何实现的。


操作空间


为了便于将文本描述的操作转化为屏幕上的操作,Mobile-Agent 生成的操作必须在一个定义好的操作空间内。这个空间共有 8 个操作,分别是:


  1. 打开 App(App 名字)
  2. 点击文本(文本内容)
  3. 点击图标(图标描述)
  4. 打字(文本内容)
  5. 上翻、下翻
  6. 返回上一页
  7. 退出 App
  8. 停止


其中,点击文本和点击图标是两个需要操作定位的操作,因此 Mobile-Agent 在使用这两个操作时,必须输出括号内的参数,以实现定位。


操作定位


在大多数情况下,MLLM 已经具备基本的操作手机的能力,在提供手机截图和用户指令后,这些模型往往能够生成正确的操作。然而,MLLM 的操作定位能力十分有限,这体现在:虽然 MLLM 可以产生正确的操作,但当要求 MLLM 输出这些操作将要在屏幕上发生的位置时,MLLM 往往无法提供准确的坐标。现有工作表明,即使是最先进的 GPT-4V,也无法提供准确的操作坐标。


虽然仅通过 MLLM 无法实现自动化操作,但是我们可以利用 MLLM 产生的正确操作,通过额外的操作定位工具实现操作定位。在 Mobile-Agent 中,一共使用了两种视觉感知工具,分别是文字识别模块和图标识别模块,如下图所示:



对于文本定位,Mobile-Agent 借助 OCR 工具来定位出指定文本。如果指定文本在屏幕中多次出现,则会将这些区域裁剪出来并绘制检测框,OCR 工具返回的多个区域将会以多图输入的方式重新做一次选择。对于图标定位,Mobile-Agent 首先借助检测模型,使用检测词 “图标” 将屏幕中所有图标区域裁剪出来,随后根据 Mobile-Agent 提供的图标描述,利用 CLIP 计算这些裁剪区域于描述的相似度,并选择最高的区域作为点击的坐标。


自我规划


Mobile-Agent 以迭代方式完成每一步操作。在迭代开始之前,用户需要输入一个指令。我们根据指令生成整个流程的系统提示。在每次迭代开始时,Mobile-Agent 会获取手机屏幕的截图,通过观察系统提示、操作历史和当前屏幕截图,输出下一步操作。如果 Mobile-Agent 输出的是结束,则停止迭代;否则,继续新的迭代。Mobile-Agent 利用操作历史记录了解当前任务的进度,并根据系统提示对当前屏幕截图进行操作,从而实现迭代式自我规划流程。


自我反思


在迭代过程中,Mobile-Agent 可能会遇到错误,导致无法完成指令。为了提高指令的成功率,Mobile-Agent 引入了一种自我反思方法。这种方法将在两种情况下生效。第一种情况是生成了错误或无效的操作,导致进程卡住。当 Mobile-Agent 注意到某个操作后截图没有变化,或者截图显示了错误的页面时,它会尝试其他操作或修改当前操作的参数。第二种情况是忽略某些复杂指令的要求。当通过自我规划完成所有操作后,Mobile-Agent 会分析操作、历史记录、当前截图和用户指令,以确定指令是否已完成。如果没有,它需要继续通过自我规划生成操作。


实验


Mobile-Eval


为了全面评估 Mobile-Agent 的能力,作者引入了 Mobile-Eval,这是一个基于当前主流应用程序的 benchmark。Mobile-Eval 共包含 10 个移动设备上常用的应用程序。为了评估多应用程序使用能力,作者还引入了需要同时使用两个应用程序的指令。作者为每个应用程序设计了三种指令。第一条指令相对简单,只要求完成基本的应用程序操作。第二条指令在第一条指令的基础上增加了一些额外要求,使其更具挑战性。第三条指令涉及抽象的用户指令,即用户不明确指定使用哪个应用程序或执行什么操作,让 agent 自己做出判断。下面的表中介绍了 Mobile-Eval 中使用的应用程序和指令。



实验结果


下表中展示了 Mobile-Agent 的评测结果。其中 SU 代表指令是否完成,PS 代表正确操作占所有操作的比例,RE 代表 Mobile-Agent 和人类完成指令时分别用了多少步,CR 是 Mobile-Agent 能够完成的操作占人类操作的百分比。在 3 种指令上,分别达到了 91%、82% 和 82% 的成功率,在完成度上,3 种指令都达到了 90% 以上,并且 Mobile-Agent 可以达到 90% 人类的效果。值得注意的是,虽然 PS 平均只有 85% 左右,但是在总共的 33 个任务上,Mobile-Agent 能够完成 28 个,这也说明了自我反思的重要性,即使会出现错误操作,也能够及时发现并纠正,最终完成任务。



其他能力


下面两个例子展示了中文场景下的表现。虽然 GPT-4V 在中文识别上还有待加强,但是在文字不多的简单场景下 Mobile-Agent 也可以完成任务。



文章来自于微信公众号 “机器之心


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md