ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
20B的体量,70B的性能,上海AI实验室与商汤科技等推出书生·浦语InternLM-20B开源大模型
4765点击    2023-09-21 09:29

9月20日,上海人工智能实验室(上海AI实验室)与商汤科技联合香港中文大学和复旦大学正式推出书生·浦语大模型(InternLM)200亿参数版本InternLM-20B,并在阿里云魔搭社区(ModelScope)开源首发。同时,书生·浦语面向大模型研发与应用的全链条工具链全线升级,与InternLM-20B一同继续全面开放,向企业和开发者提供免费商用授权,共同推动中国大模型生态建设。


书生·浦语(InternLM)大语言模型由上海人工智能实验室联合多家机构共同推出。今年6月,InternLM千亿参数(104B)语言大模型首次发布,现已经历多轮升级;7月,上海人工智能实验室开源书生·浦语70亿参数的轻量级版本InternLM-7B,且在业内率先开源贯穿数据、预训练、微调、部署和评测的全链条工具体系。InternLM-7B也已上线魔搭社区。



值得关注的是,为进一步推动大模型落地应用,上海AI实验室联合多家机构推出了中量级参数的InternLM-20B大模型,性能先进且应用便捷,以不足三分之一的参数量,达到了当前被视为开源模型标杆的Llama2-70B的能力水平。


书生·浦语“增强版”:增的不只是量


相比于国内社区之前陆续开源的7B和13B规格的模型,20B量级模型具备更为强大的综合能力,在复杂推理和反思能力上尤为突出,因此可为实际应用带来更有力的性能支持;另一方面,20B量级模型可在单卡上进行推理,经过低比特量化后,可运行在单块消费级GPU上,因而在实际应用中更为便捷。


InternLM-20B是基于2.3T token预训练语料从头训练的中量级语言大模型。相较于InternLM-7B,训练语料经过了更高水平的多层次清洗,补充了高知识密度和用于强化理解及推理能力的训练数据。




基于OpenCompass的InternLM-20B及相近量级开源模型测评结果


在考验语言模型技术水平的理解能力、推理能力、数学能力、编程能力等方面,InternLM-20B与此前的开源模型相比,性能显著增强:

优异的综合性能,通过更高水平的数据清洗和高知识密度的数据补充,以及更优的模型架构设计和训练,显著提升了模型的理解、推理、数学与编程能力。评测结果显示,InternLM-20B在全维度上领先于开源13B量级模型,平均成绩明显超越Llama-33B,以不足三分之一的参数量,评测成绩达到了被视为开源模型的标杆Llama2-70B水平。


拥有强大的工具调用能力,实现大模型与现实场景的有效连接,并具备代码解释和反思修正能力,为智能体(Agent)的构建提供了良好的技术基础。


支持更长的语境,通过多阶段训练拓展,支持16K语境长度,更有效地支撑长文理解、长文生成和超长对话,并为在InternLM-20B之上打造智能体(Agent)的提供关键技术基础。

具备更安全的价值对齐,书生·浦语团队对InternLM-20B通过基于SFT(监督微调)和RLHF(基于人类反馈的强化学习方式)两阶段价值对齐,以及专家红队的对抗训练,大幅提高其安全性。当面对带有偏见的提问时,模型能够给出正确引导。


全链条工具体系再巩固:各环节全面升级


今年7月,上海AI实验室在正式发布书生·浦语的同时,在业内率先开源了覆盖数据、预训练、微调、部署和评测的全链条工具体系。历经数月升级,书生·浦语全链条开源工具体系巩固升级,并向全社会提供免费商用。



全面升级的全链条工具体系


数据-OpenDataLab开源“书生·万卷”预训练语料

书生·万卷是上海AI实验室开源的多模态语料库,包含文本数据集、图文数据集、视频数据集三部分,数据总量超过2TB。目前,书生·万卷1.0已被应用于书生·多模态、书生·浦语的训练,为模型性能提升起到重要作用。


预训练-InternLM高效预训练框架

除大模型外,InternLM仓库也开源了预训练框架InternLM-Train。深度整合Transformer模型算子提升了训练效率,并提出独特的Hybrid Zero技术,显著提升训练过程中的通信效率,实现了高效率千卡并行,训练性能达行业领先水平。


微调-InternLM全参数微调、XTuner轻量级微调

InternLM支持对模型进行全参数微调,支持丰富的下游应用。同时,低成本大模型微调工具箱XTuner也在近期开源,支持多种大模型及LoRA、QLoRA等微调算法。通过XTuner,最低仅需 8GB 显存即可对7B模型进行低成本微调,在24G显存的消费级显卡上就能完成20B模型的微调。


部署-LMDeploy支持十亿到千亿参数语言模型的高效推理

LMDeploy涵盖了大模型的全套轻量化、推理部署和服务解决方案,支持了从十亿到千亿级参数的高效模型推理,在吞吐量等性能上超过FasterTransformer、vLLM和Deepspeed等社区主流开源项目。


评测-OpenCompass一站式、全方位大模型评测平台

OpenCompass是上海AI实验室开源的大模型评测平台,构建了包含学科、语言、知识、理解、推理五大维度的评测体系,支持超过50个评测数据集和30万道评测题目,支持零样本、小样本及思维链评测,是目前最全面的开源评测平台。自7月发布以来,受到学术界和产业界广泛关注,目前已为阿里巴巴、腾讯、清华大学等数十所企业及科研机构广泛应用于大模型研发。


应用-Lagent轻量灵活的智能体框架

书生·浦语团队同时开源了智能体框架,支持用户快速将一个大语言模型转变为多种类型的智能体,并提供典型工具为大语言模型赋能。Lagent集合了ReAct、AutoGPT 及ReWoo等多种类型的智能体能力,支持智能体调用大语言模型进行规划推理和工具调用,并可在执行中及时进行反思和自我修正。


全面赋能AI社区生态的繁荣发展

基于书生·浦语大模型,上海AI实验室已经发展出更丰富的下游应用,将于近期陆续向学术及产业界分享。


面向大模型掀起的新一轮创新浪潮,上海AI实验室致力于以原始创新引领技术进步,持续打造综合能力更强大的基础模型,构建更完整易用的全链条工具体系,并坚持通过开源开放、免费商用,全面赋能整个AI社区生态的繁荣发展,帮助企业和研究机构降低大模型的开发和应用门槛,让大模型的价值在各行各业中绽放。


据了解,阿里云魔搭社区开设了书生·浦语“模型品牌馆”专页,聚合书生·浦语系列所有模型及体验接口,便于开发者一站式查询、下载、使用书生模型;魔搭公众号则推出了最佳实践教程,提前跑通模型的部署、推理和微调流程,供开发者参考。



阿里云魔搭社区是国内规模最大、开发者最活跃的AI模型社区,拥有200多万开发者,聚集了20多家头部人工智能机构贡献的1000多款优质AI模型,为开发者提供一站式的模型体验、下载、推理、调优、定制等服务,社区模型累计下载量已突破7500万次。


“以开源开放促进中国大模型生态繁荣”是书生·浦语大模型体系与魔搭社区携手共建的初衷。上海人工智能实验室坚持通过开源开放,全面赋能AI社区生态的繁荣发展,支撑学术研究与产业发展。阿里云则把促进中国大模型生态的繁荣作为首要目标,牵头建设中国最大的AI模型开源社区魔搭,并为大模型企业和开发者提供全方位云服务。


开源的链接地址如下:


代码库链接:https://github.com/InternLM/InternLM

魔搭社区链接:https://modelscope.cn/organization/Shanghai_AI_Laboratory



文章转载自”周到上海“


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner