3500万美元押注一个疯狂想法:Viven让每个员工都有数字分身
3500万美元押注一个疯狂想法:Viven让每个员工都有数字分身Viven 的核心创新在于,它为每个员工创建了一个个性化的大语言模型,实质上就是一个数字分身。这个分身通过访问员工的内部电子文档,包括邮件、Slack 消息、Google Docs、会议记录等,学习这个人如何思考、如何沟通、拥有什么知识。关键是,这个学习过程是自动进行的,不需要员工做任何额外工作。你只需正常工作,你的数字分身就会不断更新和进化。
Viven 的核心创新在于,它为每个员工创建了一个个性化的大语言模型,实质上就是一个数字分身。这个分身通过访问员工的内部电子文档,包括邮件、Slack 消息、Google Docs、会议记录等,学习这个人如何思考、如何沟通、拥有什么知识。关键是,这个学习过程是自动进行的,不需要员工做任何额外工作。你只需正常工作,你的数字分身就会不断更新和进化。
香港科技大学KnowComp实验室提出基于《欧盟人工智能法案》和《GDPR》的LLM安全新范式,构建合规测试基准并训练出性能优异的推理模型,为大语言模型安全管理提供了新方向。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
大语言模型(LLM)不仅在推动通用自然语言处理方面发挥了关键作用,更重要的是,它们已成为支撑多种下游应用如推荐、分类和检索的核心引擎。尽管 LLM 具有广泛的适用性,但在下游任务中高效部署仍面临重大挑战。
在代码层面,大语言模型已经能够写出正确而优雅的程序。但在机器学习工程场景中,它离真正“打赢比赛”仍有不小差距。
从ChatGPT到DeepSeek,强化学习(Reinforcement Learning, RL)已成为大语言模型(LLM)后训练的关键一环。
近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。
LLaVA 于 2023 年提出,通过低成本对齐高效连接开源视觉编码器与大语言模型,使「看图 — 理解 — 对话」的多模态能力在开放生态中得以普及,明显缩小了与顶级闭源模型的差距,标志着开源多模态范式的重要里程碑。
大语言模型在RLVR训练中面临的“熵困境”,有解了!
当大语言模型生成海量数据时,数据存储的难题也随之而来。对此,华盛顿大学(UW)SyFI实验室的研究者们提出了一个创新的解决方案:LLMc,即利用大型语言模型自身进行无损文本压缩的引擎。