
从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述
从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述过去几年,大语言模型(LLM)的训练大多依赖于基于人类或数据偏好的强化学习(Preference-based Reinforcement Fine-tuning, PBRFT):输入提示、输出文本、获得一个偏好分数。这一范式催生了 GPT-4、Llama-3 等成功的早期大模型,但局限也日益明显:缺乏长期规划、环境交互与持续学习能力。
过去几年,大语言模型(LLM)的训练大多依赖于基于人类或数据偏好的强化学习(Preference-based Reinforcement Fine-tuning, PBRFT):输入提示、输出文本、获得一个偏好分数。这一范式催生了 GPT-4、Llama-3 等成功的早期大模型,但局限也日益明显:缺乏长期规划、环境交互与持续学习能力。
苹果研究人员发现,在大模型中,极少量的参数,即便只有0.01%,仍可能包含数十万权重,他们将这一发现称为「超级权重」。超级权重点透了大模型「命门」,使大模型走出「炼丹玄学」。
训练大模型时,有时让它“记性差一点”,反而更聪明! 大语言模型如果不加约束,很容易把训练数据原封不动地复刻出来。为解决这个问题,来自马里兰大学、图宾根大学和马普所的研究团队提出了一个新方法——金鱼损失(Goldfish Loss)。
大语言模型通过 CoT 已具备强大的数学推理能力,而 Beam Search、DVTS 等测试时扩展(Test-Time Scaling, TTS)方法可通过分配额外计算资源进一步提升准确性。然而,现有方法存在两大关键缺陷:路径同质化(推理路径趋同)和中间结果利用不足(大量高质量推理分支被丢弃)。
随着DeepSeek R1、Kimi K2和DeepSeek V3.1混合专家(MoE)模型的相继发布,它们已成为智能前沿领域大语言模型(LLM)的领先架构。由于其庞大的规模(1万亿参数及以上)和稀疏计算模式(每个token仅激活部分参数而非整个模型),MoE式LLM对推理工作负载提出了重大挑战,显著改变了底层的推理经济学。
如今,人工智能已经成为科技发展的主流,尤其是 ChatGPT 问世以来,大语言模型(LLM)正在深刻影响社会、企业和个人的方方面面。
当前基于大语言模型(LLM)的智能体构建通过推动自主科学研究推动 AI4S 迅猛发展,催生一系列科研智能体的构建与应用。然而人工智能与自然科学研究之间认知论与方法论的偏差,对科研智能体系统的设计、训练以及验证产生着较大阻碍。
谷歌DeepMind最新Nature王炸,直接把Gemini版大模型PH-LLM调教成了「AI健康私教」,把可穿戴冷冰冰的数据,直接变成睡眠健身建议,结果准确率暴打人类医生。
大语言模型正加速重塑软件工程领域的各个环节,从需求分析到代码生成,再到自动化测试,几乎无所不能,但衡量这些模型到底「好不好用」、「好在哪里」、「还有哪些短板」,一直缺乏系统、权威的评估工具。
当大语言模型(LLM)走向千行百业,推理效率与显存成本的矛盾日益尖锐。