
全球开源大模型,前十五名全是中国的
全球开源大模型,前十五名全是中国的近日,随着新一代大语言模型(LLM)的一波更新,开源大模型再次成为了热门讨论话题。软件工程师、自媒体 Rohan Paul 发现了一个惊人的现象:Design Arena 排行榜上排名前十几位开源 AI 模型全部来自中国。
近日,随着新一代大语言模型(LLM)的一波更新,开源大模型再次成为了热门讨论话题。软件工程师、自媒体 Rohan Paul 发现了一个惊人的现象:Design Arena 排行榜上排名前十几位开源 AI 模型全部来自中国。
如果我们的教科书里包含大量的污言秽语,那么我们能学好语言吗?这种荒唐的问题却出现在最先进 ChatGPT 系列模型的学习过程中。
近年来,大语言模型(LLMs)展现出强大的语言理解与生成能力,推动了文本生成、代码生成、问答、翻译等任务的突破。代表性模型如 GPT、Claude、Gemini、DeepSeek、Qwen 等,已经深刻改变了人机交互方式。
AI一日,人间一年。 大语言模型的战局刚刚尘埃落定,Agent的热潮又汹涌而至。
本文介绍使用四块Framework主板构建AI推理集群的完整过程,并对其在大语言模型推理任务中的性能表现进行了系统性评估。该集群基于AMD Ryzen AI Max+ 395处理器,采用mini ITX规格设计,可部署在10英寸标准机架中。
近期多项研究 [1-2] 表明,即使是经过安全对齐的大语言模型,也可能在正常开发场景中无意间生成存在漏洞的代码,为后续被利用埋下隐患;而在恶意用户手中,这类模型还能显著加速恶意软件的构建与迭代,降低攻击门槛、缩短开发周期。
在大语言模型的竞争中,数学与代码推理能力已经成为最硬核的“分水岭”。从 OpenAI 最早将 RLHF 引入大模型训练,到 DeepSeek 提出 GRPO 算法,我们见证了强化学习在推理模型领域的巨大潜力。
近年来,强化学习(Reinforcement Learning, RL)在提升大语言模型(LLM)复杂推理能力方面展现出显著效果,广泛应用于数学解题、代码生成等任务。通过 RL 微调的模型常在推理性能上超越仅依赖监督微调或预训练的模型。
在科研、新闻报道、数据分析等领域,图表是信息传递的核心载体。要让多模态大语言模型(MLLMs)真正服务于科学研究,必须具备以下两个能力
在AI浪潮席卷全球的2025年,大语言模型(LLM)已从单纯的聊天工具演变为能规划、决策的智能体。但问题来了:这些智能体一旦部署,就如「冻结的冰块」,难以适应瞬息万变的世界。