ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
独家|世界模拟器才是AGI终局,12态势预测!首席专家万字长文专业解读Sora里程碑
6723点击    2024-02-21 16:58
生成60秒逼真视频,只是未来的一个小功能,母模型根科技原力觉醒。来自未来实验室的首席专家胡延平就爆火Sora模型做出了深度的个人解读。


这几天反复看Sora的技术报告,以及各方对Sora的技术分析。


基本三个角度:惊呼强大功能,分析Sora(实现)大法,评估巨大冲击。


冲击方面,主要关注点在于对影视、短视频、娱乐等领域的影响。


但是,Sora改变AI认知方式,开启走向「世界模拟器」的史诗级的漫漫征途,才是未来暴风眼,真正的重点。而世界模拟器,是远比AGI、具身智能、元宇宙更炸裂的智能未来。


Sora技术报告最有价值、最语焉不详、最容易产生不同理解的一句话是:「通过扩大视频生成模型的规模,我们有望构建出能够模拟物理世界的通用模拟器,这无疑是一条极具前景的发展道路」。



而本文所述世界模拟器,与Sora目前自述以及业内理解,可能不太一样。


很显然要么是Sora言过其实,要么是OpenAI留了一手,要么是现阶段技术局限使然。



1. Sora只是二维视觉的压缩扩散和时空表达,不是物理引擎,也不是世界模型


相比「现实不存在了」这种既乖张又夸张的表达,专业人士的意见貌似客观,但实际偏差也不小。


Sora不是英伟达高级科学家Jim Fan所称的数据驱动的物理引擎、一个可学习的模拟器或世界模型,也不会像周鸿祎所言能够让AGI一两年内就很快实现。


从LLM的文本Token/向量表征,到走向模拟器但还不是模拟器的Patches表达,是原理变化的核心。


技术报告在原理部分高度保留,极为简略,但其中一张图比较重要。Sora基于Transformer但是对Transformer进行了有力进化,结合了Difussion,Patches是关键。


不过Sora怎么看都还只是二维视觉的时空表达,处处压缩,Patches依然是图像内容关系信息,且有文本烙印,并不是物理世界规律的多维表征。世界模拟器前面加个定语——二维视觉世界模拟器,也许更准确。



三维图像是数字世界的空间构建,二维视觉其实是像素的运动变化组合。三维、二维视频都可以看上去像是「物理的」,但实质可以只是运动变化拟合了物理规律,而不是像粒子渲染、工业仿真一样进行了物理规则、内在性状的数字构建。


背后原因,如同你知道大模型输出的答案,知道大模型的计算原理,但是却像神经网络/深度学习之父Geoffrey Hinton和OpenAI前首席科学家Ilya Sutskever一样,其实不知道GPT是怎么「想」的。


Patches所携带的像素、位置、时空信息,以及与周围Patches的变化、运动、关系,在Transform的注意力机制和Difussion的正反向噪声过程,经过大规模视频数据训练,具有了解构和重构一切二维视觉的能力,面向用户表现为涌现式的生成,似乎充满创造力且符合物理规律,但背后其实是Sora「理解」了Patches/像素的变化、运动、位置在时空意义上的关系的数学、算法表征,这些变化和表征又拟合了物理世界的某些合理性。(Patches并非像素)


「理解」即算法,「思考」即模型。


好拗口,好抽象,好累人,但可能这就是事实。


比如,Sora的工程师可能投喂了数千万甚至数亿条视频让大模型来学习,但是可能没有写过哪怕一行与物理性状规则有关的代码。


再比如,Sora可能的确学习了一些3D引擎生成的素材,并且像当初通过DOTA2游戏对战来改进模型一样,引入3D引擎来校正模型生成视频在视觉意义上的物理运动表现,但是百分百可以肯定Sora目前并没有内置3D引擎。


Sora让用户以为它理解了物理世界、物理规律,就像用户头戴苹果Vision Pro的时候以为看到了物理世界,但其实只是在屏幕上看到了携带不断变化的RGB色彩信息的单目3648x3144个像素的各种变化。



甚至图像其实并不是连续的,而是以每秒90-96次的帧率不断刷新,拟合人眼视觉原理,让用户产生视频是连续的错觉。一旦快速甩头,画面就会产生运动模糊。重度游戏玩家甚至能体会到画面撕裂。


视频符合物理规律,不等于视频的生成基于物理规律,更不等于生成视频的大模型本身是数据驱动的物理引擎。所谓物理,可以只是视频画面整体与局部、前后帧统一的像素级的变化规律、表征关系。


2. 即使如此,Sora还是打开AI新视界大门的那个史诗级的里程碑,大模型认知重启


在对Sora原理的各种猜测里,华人AI学者谢赛宁的分析最为贴近。但是局限于技术原理的框架性拆解以及对灵活、可扩展性的强调,反倒没有道出Sora的突变实质——大模型认知重启。


此外,直觉谢赛宁认为Sora目前只有30亿参数的估计也过于保守。



Sora被认为采用了以Transformer为主干的混合扩散模型DIT,其中DIT=VAE编码器+VIT+DDPM+VAE解码器。


此外,Sora还可能使用与Google的Patch n‘Pack(NaVit)类似的技术,以此适应不同分辨率、持续时间和⻓宽比。


尽管在视频标注、将提示词转化为详细说明等方面,Sora充满详实且强烈的文本色彩,但Sora实质上是完全基于视觉、面向视觉、以图像理解世界的大模型。


这一点和过去GPT「文本数据元」(不是神经元)意义上的Token有很大不同,Patches是碎片、补片、基本单元意义上的「视觉信息元」(也不是神经元),Sora里的文本只是人与机器之间、机器与视频之间的「翻译者」、「说明书」。


图像、视频的信息量其实远大于文本,呈现在视觉里的现实世界更是如此。海量视频样本,已经让Sora建立了视觉世界的宏观/微观时空变化的基本动态关系「理解」。


如果将Sora连接到全球各地的机器人、智能汽车、MR头显、智能手机等设备,借助数智之眼,大模型将能够:


  1. 自己「亲眼」看到、学习和了解这个世界,而不是仅仅依赖人类投喂给系统的有限文本数据,海量知识信息的「新视界」之门由此打开。
  2. 智能设备后接Sora+GPT,实时感知现实,是对具身智能的有力加持,机器人等智能设备有希望获得类似人类感知现实的视觉和判断能力,看到即学习,判断即意味。尽管一开始与人类感知能力还是有较大差距,但也远非传统计算机视觉可比。
  3. 加之Sora式的大模型的Input和output本来就可以充分文本化,所以丝毫不用担心这个机器认知的视觉世界和人类的自然语言交互/体感交互会有什么问题。这是一种机器知道视觉「意义」的理解过程。


Sora出现的最大意义,并非可以生成60秒、多个分镜头、主体统一的视频,而是意味着大模型由此可以「睁开眼睛」看世界,这是不亚于人类认知重启的AI的第一次认知重启,并且这还不是全部。


3. 认知重启通向世界模拟器,这意味着「原力觉醒」:大模型里的母模型,未来根科技


Sora还不是世界模拟器,但是表现出了这样的潜力。它没有产生终极答案,但是告诉了业者,隐约可行的方向在哪里。


尽管Sora还远不足以成为通用世界模拟器,但是Sora证明Token(1.0)、Patch(2.0)之后,物理世界的X(3.0)表征是可行的。从文本语义、视觉到物理,是大模型原理的三次飞跃,也是走向真正的通用(其实首先基于多领域专业模拟器)世界模拟器的进阶路径。



Sora还不是物理引擎,但是未来可以泛化为物理引擎。


Patch还只是 ((x,y,z), t )、关系、色彩、内容信息意义上的视觉信息元,并不是神经元,但是未来可以进化为数字神经元。Transformer大模型无论如何都不可能具备人脑一般的量子能力,但是高维全局注意力机制局部具备拟合量子态的潜力。


因为AI对智能进行表征的底层逻辑是数学的,相对人脑的直觉、模糊、随机、潜意识等特征,大模型的机械与恍惚同在。但是一如判断准确率从0、30%、50%、80%、90%以上一路走来,原理不断升维,时空不断转换,面向AGI的进化表现为不断接近高可用性、接近乃至超越人类智能的渐进过程。


但AGI不是终点,也不是圣杯,世界模拟器才是。


Sora有助于实现AGI,但Sora开启的漫漫征途的主要指向并不是AGI,而是世界模拟器。AGI的定义有多种,经典意义上的AGI是类GPT在数据、算力、算法进化到一定程度之后,在知识、内容、程序等工作与创作方面,表现出总体达到局部超越人类智能的能力。


AGI依然是工具,能够支持具身智能,但不是具身智能。AGI并不真正具备内生、自主能力,更多时候只是为人所用的工具。



说到这一点,一定有必要厘清智能发展的不同形态和不同阶段,由此才能看清GPT4、Sora、AGI、世界模拟器所处的生态方位和时空节点。


当我们在说智能的时候,其实同时有三种智能。Smart意义上的功能智能,昔日AI意义上的计算感知智能,也就是弱(的)智能(AI1.0),2020年以来(尤其2023年被视为正式开端)认知智能意义上的强智能(AI2.0)。


目前自动驾驶、机器人等智能水准严格意义上讲处于AI1.0也就是弱智能范畴。强智能(AI2.0)对智能汽车、机器人等智能设备的二次赋能,是正在到来的趋势。


这也是尽管国内人工智能发展如火如荼,但实质存在代差的原因。一些受不了此强彼弱的人,大呼「我们也不差」,认为GPT这一波是在制造威胁论。其实无须嘴硬,凡事都要先争个面子。只需实事求是,看清格局,抓住关键,迎头赶上就好。


如何看待Sora/GPT的背后,还有另一个实质:有没有看到战略高地、科技龙头、智能圣杯、变革引擎、暴风眼在哪里。强AI就是战略高地,AI for Science就是科技龙头,AGI就是眼前的智能圣杯,通用与各领域专业模型就是变革引擎,世界模拟器就是未来的暴风眼。


前面说的三种智能都还只是形态水准,并不是对智能发展的阶段区分。我将智能发展相对划分为五个阶段:计算功能智能、计算感知智能、认知智能、内生智能(EI)、自主智能(II)。


请注意,有一天AI人工智能这个提法会边缘化,因为智能不再是「人工」的。人工的AGI自然不是终点,智能将比我们对AGI的预期走得更远。这一点我在《走向第二曲线》有详细分析,此处不再赘述。


智能变革的核心是超级智能,超级智能的具身是AGI,AGI是AI2.0、认知智能的高级形态(但主要还是人工投喂人工增强的智能),AGI是现阶段所言AI的高级形态,但不是EI内生智能和II自主智能。AGI不会像某些人说的一两年內就会实现,但估计也就在GPT6前后。之后的阶段,属于内生智能(EI)、自主智能(II),属于世界模拟器。世界模拟器是EI基石,II基准。


超级智能是世界之脑,超级智能的母体是世界模拟器。世界模拟器是大模型里的母模型,未来科技里的根科技。


看看大模型在工业仿真、环境气候、材料预测、蛋白质分析、分子药物、基因研究等领域已经遍地开花的强力开局,就会知道,Sora与它们正在殊途同归:世界模拟器未来主要不是用来玩的,并不是元宇宙概念的炒资,而是科技生产力爆发点,是智能未来真正的炸裂点。


世界模拟器,科技里的母科技,AI for Science各领域的核心抓手,每个领域的交感、理解、复现、预测,未来世界的「CAE」仿真只是其基础特性之一。世界模拟器,是最接近智能母体的存在。


世界模拟器意味着「原力觉醒」,创新之源,科技驱动,战略高地,不容有失。


4. 走向世界模拟器的漫漫征途,将经历哪些阶段?


Sora放出的所有视频里,最具深度探讨价值的其实是那个水杯倾倒的片段。



Sora是如何拟合现实的,究竟是不是物理引擎,如何才能成为符合物理特性的引擎,未来又如何才能够成为世界模拟器。从中隐约可见答案。


CV发展初期,计算机能做到的只是杯子边缘轮廓特征提取和复现(比如Neocognitron),再后来可以识别到这是一个水杯(比如早期ImageNet),再后来可以「理解」水和杯子的关系(CNN&RNN),现在能够开始学习和复现水杯倾倒过程(Transformer/Sora),接下来会怎么样发展,也许只有大模型技术专家知道,也许都还在探索,并无定论。


我只是站在用户角度进行黑箱式的透析,超级智能接下来能不能够做到这几步?


  1. 水杯倾倒的流动特症能不能完全符合物理特性,不出现目前的明显瑕疵?对应流体力学等。
  2. 水杯倾倒后能不能做到视频中的冰逐渐在水中融化(所以更感兴趣那个汉堡咬痕)?对应热力学等。
  3. 水杯倾倒后导致桌面桌布等湿化以后能不能看到水渍、水汽的光影与色彩变化(所以更感兴趣那个画布笔触)?对应光学物理等。
  4. 水杯倾倒的过程能不能生成与实景契合的声音,而不只是简单声效?对应声学物理等。
  5. 水杯倾倒的角度与力量能不能做到随机操控,产生碎裂、泼溅、蒸发等不同现象?综合以上及凝聚态物理。
  6. 水杯倾倒周围如果有电源、危化物品,能否进行场景预测、情景预现?对应电磁物理、物理化学等。


以上都只是物理角度的简单引申,世界模拟器所需要对应到的科学领域,以及现实世界的复杂现象,甚至是目前数十个主要学科尚未能穷尽的。所以无论从过程还是领域而言,都是征途漫漫。但这才是星辰大海。


相应的几个循序渐进的问题是:


  1. Sora可以对3D图像而不是3D引擎生成的2D视频进行学习训练吗?
  2. Sora可以从微宏观统一的尺度,对三维物体的内在性状进行学习训练吗?
  3. Sora可以在模型原理、神经网络、节点层级对物理世界进行X(3.0)意义上的3D时空运动表征,并在世界虚拟器交感、理解、复现、预测四要素具备的基础上使X进化为神经元吗?


面向世界虚拟器的进化,远不止这些问题,更不只是这些维度……


总的来说,Sora部分拟合了「视觉规律」,但是还没有真的理解「物理世界」。目前的Sora本质上还是在视觉内容世界里,更多与视频、游戏、娱乐等相关。但并不妨碍Sora式的大模型下一步,进入机器人、智能汽车等主要智能设备,以及成为世界模拟器。


AI For Science是世界模拟器的关键落地场景,而AI For Science意义上的X(3.0)是物理世界与视觉世界的分叉点,就像Patch(2.0)是文本世界Token(1.0)与视觉世界的分叉点。


数据、学习、生成、预期是AGI四要素,信息内容感更强。交感、理解、复现、预测,是世界模拟器四要素,母体感知现实具身感更强。世界模拟器的Input和output,实质主要由机器智能系统自主完成,是具有自我强化和自主行为能力的智能。世界模拟器征途漫漫,必将通向EI、II。


5. 接下来的态势会怎么样?12种情况预估


态势1:Sora模型并非不可复制。


OpenAI如果短期内不正式推出Sora(快不了)给全球用户,其它竞争对手也会陆续发布自己的类似产品,Patches做法早已有之,并非独门暗器。


OpenAI和Google、Meta之间只有时间差。但是中小团队的数据差、资源差、算力差造成的竞争弱势,只有原理升维才可能弥补。Pika、Runway如果不能在原理层面完成超越,哪怕勉强能够追上Sora未来也是堪忧。另外,原理相似不等于效果相同,差之毫厘谬之千里。


态势2:拚原理>拚算力,模型原理升维才是能力跃迁关键,但算力必不可少且需求继续陡增。


Sora对prompt单次响应与output过程的算力消耗必然远超GPT4.0,但这并不是重点。Sora再一次证明,拚原理的重要性远大于拚算力,算力算什么(而不是算力)才见高下。


原理引起的格局翻覆往往就在一瞬间,今后也是,翻覆还将多次。但算力总体需求依然呈现为爆发式增长,因为要算的不再只是文本/Token,视觉/Patches会令算力需求陡增。


未来物理引擎、世界模拟器对各类传感的接入需要和计算需求,更会令算力吃紧。即使眼前线性地看,高质量海量数据总是优于小体量数据,参数量大总是优于参数量小,模型的深层、多阶段、反复思考总是优于单阶段,高分辨率高精度总是显著优于低精度,所以算力需求依然呈现为指数级增长。但总体而言,算力只是必要条件。


态势3:以Transformer为主干的大模型依然是主要演进方向,且具有巨大潜力。


Self-Attention机制在电子计算的层级模拟了量子态(只是神似),消除了信息元之间的距离限制、消解了CNN的场域阻隔,在量子计算可用之前,是以数学、电子计算为基础的最具脑特征的智能。


态势4:轻与重,大和小,单一与混合,始终是两种并行逻辑。


在计算机视觉模型走向大模型、进而走向世界模拟器的漫漫征途中,视频看上去「合理」的Sora走的是一条更轻的捷径,操控感、立体感、前后扩展自然不够理想。


3D建模、粒子渲染、光线追踪从算力、设备和人工投资来说,又笨又重,但更贴近本质,且操控感更强。就像自动驾驶的两条计算机视觉路线,一个靠CMOS图像数据来算,一个靠雷达来对物理空间进行点云建模。


目前只能说电影工业多了一个选择,倒还没有摧枯拉朽那么夸张。微电影、短视频倒是因此生发出无限可能。


态势5:功能瑕疵问题反倒不是问题,并且越往世界模拟器方向走,视频生成的这些小问题越无关大局。


时间线前后扩展、主体融合过渡、场景置换、连续性、3D运镜、多镜头、汉堡咬痕,这些只是目前的能力,Sora的可用性未来会更加超出预期。


目前存在的左右腿瞬移、多指多趾、人物消失、运动变形、人穿过栅栏等bug多多,但是瑕不掩瑜,而且这些问题随着训练规模增加、模型不断微调优化,必然迎刃而解。


态势6:Sora与Vision Pro的确是一对想象力组合,但是以为戴上头盔就可以念念有词的,一多半可能会失望。


此外,VR在向MR进,AR在向MR退,VR以后只是MR的一个功能,MR是产业科技目前能够到的交叉点,最难突破的AR未来才是主要形态。


态势7:OpenAI本身的4个可能与6个不可能。


可能方面:成为主流AI开发者平台,成为最大Store,形成数十亿用户生态,部分具身智能能力。


不可能方面:7万亿美元造芯,模型原理持续领先,开源开放,纵横整合产业链,成为具身智能/内生智能/自主智能,坚持初创理念不动摇不成为......


尤其7万亿美元AI造芯那条忽悠了不少人的吊诡信息,是WSJ援引所谓消息人士,并不是奥特曼本人,已投Rain股权中的沙特基金在被美帝劝退,还和中东主权基金合计在美投资数万亿美元的大规模芯片制造?绿钱不参与的话,找够相当于美元「风投+IPO」十几年总额的资金做AI芯片,要么是概念吹疯了,要么是常识缺位,要么是算数不会了。更重要的是,制造并不是AI计算突破重点。


态势8:全生态转变已开始,AI是主驱动但不是化学反应全部。


6个要素:感知(交互)、计算(数据)、智能(AI)、连接(网络)、协约(关系)、能量(能源)等。


态势9:变化非线形。


深层玩家不仅着眼算力提升,还在酝酿计算架构之变,变化不会是线性的,有可能业者讨论的未来其实是现在,而不是升维后的未来。下一步模型原理、计算架构包括芯片,都将不断有重大变化。


态势10:AI原力在底层,应用只是需求牵引力。


国内团队适合从应用着手说法没错,但过早定格一觉醒来发现楼塌了不是没有可能,还是需要有人聚焦底层之变,包括硬件底层,硬仗有人打,至少紧跟。


态势11:一定是云端边-大中小-PPP混合AI,如此战场方能展开;但不能只着眼AI,感数算智、软硬协同、形态创新等维度交织才是完整视角,也是价值展开的关键。


如果只是窄化为算力算法意义上的AI,轻量化为场景需求意义上的应用,无异于互联网思维,只可能第一天就卷,只可能是store里的一个GTPs、APPs,就像互联网时代曾经活成了「很厉害」的APP的样子;这是一场原力致胜的立体战役,最需要褪去的就是互联网思维;凡事偷轻,难堪重任;处处求简,难当多面;全生态全体系变革,仅应用不足以催化,仅算力算法数据模型意义上的AI不足以驱动。


态势12:压力陡增。


回到老难题,中美AI之争,李约瑟之问和钱学森之问。说实话GPT3.5、GPT4.0发布之际,压力不那么大,总觉得有得一追,毕竟都还在文本、代码、图片维度。但是Sora一出,压力陡增。升维比想象得快。竞争和发展不是二维、线性的。真正的物理世界模拟器,已经隐约能嗅到味道,且原理隐约可见。这才是AI未来竞争、大模型决胜的炸裂点。


朋友有句话说得好,当年Alpha Go/zero碾压人类围棋之后,事了拂衣去,一年后阿尔法Fold横空处世,重塑了人类对蛋白质结构认知与预测,这才叫伟大工程。Sora也是一样,如果只以为它是60秒视频生成神器,被网络喷子喷成「洋人的奇技淫巧」,无用之用,可以说与业外对早期AlphaGo的「下棋玩具」理解有几分神似。


但如果从大模型睁开眼睛看世界,AI认知重启,以及潜在的世界模拟器发展方向看,这显然是正在觉醒的原力。企业如果忽视趋势,在这一史诗级的漫漫征程中落伍,会被降维打击得连亲妈都认不出来。


AI认知重启,超级智能点亮亿万机器之心,世界虚拟器成为母模型根科技,不是科幻,这是一个时代的序幕。


那么,AI认知已然重启,人类的认知重启了吗?


作者介绍



胡延平,DCCI未来智库创始人,FutureLabs未来实验室首席专家,信息社会50人论坛成员。《全球创新前沿科技地图》及相关研究项目主导,科技畅销书《黑科技》(2017)共同作者与出品人。


历任《互联网周刊》总编、中国互联网协会交流发展中心主任等媒体与NGO职务,持续专注于前沿科技创新探索,角度专注于「从技术看产品,从产品看产业,从产业看生态」。


1997以来出版多部科技专著。《奔腾时代(硅谷)》(1997)作者、《数字蓝皮书》(2000)、《跨越数字鸿沟》、《第二次现代化》、《第四种力量》(2002)著者,《Google将带来什么》(2009)译者之一。


文章来自于微信公众号 “新智元”,作者 “胡延平”


关键词: 世界模拟器 , AGI , sora
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI 3D建模

【开源免费】LGM是一个AI建模的项目,它可以将你上传的平面图片,变成一个3D的模型。

项目地址:https://github.com/3DTopia/LGM?tab=readme-ov-file

在线使用:https://replicate.com/camenduru/lgm

2
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI

3
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

4
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0