ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!
9940点击    2024-03-13 14:53
新模型bGPT是一个基于字节的Transformer模型,能够将不同类型的数据纳入同一框架之下,可以生成文本、图像和音频,还能模拟计算机行为,数字世界将迎来真正的大一统?


微软亚洲研究院推出的最新成果bGPT,这种基于字节的Transformer模型,为我们探索数字世界开辟了新的大门。


与传统的基于词表的语言模型不同,bGPT的独特之处在于其对原始二进制数据的直接处理能力,不受特定格式或任务的限制,其目标是全面模拟数字世界。



论文:https://arxiv.org/abs/2402.19155

代码:https://github.com/sanderwood/bgpt

模型:https://huggingface.co/sander-wood/bgpt

项目主页:https://byte-gpt.github.io


研究团队在其论文中展示了bGPT在建模上的巨大潜力,通过字节级处理,bGPT不仅能生成文本、图像和音频,还能模拟计算机行为——从格式转换算法到CPU状态的建模。将所有数据视为字节序列的做法,使bGPT能够将不同类型的数据纳入同一框架之下。


bGPT的论文一经发布,便在X(Twitter)上引发了广泛的关注和讨论,标志着深度学习范式转变的可能性,使得模型能够真正理解并模拟数字世界中的各种活动。


二进制数据:构成数字世界的基础DNA


二进制数据是数字世界的基础,从计算机处理器到我们日常使用的电子产品的操作系统,构成了所有数据、设备和软件的核心。bGPT正是从这一点出发,旨在通过学习二进制数据序列来掌握数字系统的内部逻辑,以此来重建和模拟复杂的数字现象。


bGPT通过字节级的处理,不仅能应用于常规的AI生成和理解任务,还能处理更多的非传统应用。例如,它能直接模拟MIDI——一种音乐传输和存储的标准格式,这在之前的研究中由于MIDI的二进制本质而避免了直接建模。


但bGPT天生适合此类任务,能够精确模拟音乐数据的转换算法,将ABC记谱法转换为MIDI格式时,达到极低的错误率(0.0011 BPB)。


在实际应用中,bGPT通常能够准确地完成ABC符号与MIDI文件之间的转换,有时甚至能纠正原始文件中的错误,使音乐转换更加准确。



bGPT自动将ABC记谱法转换成MIDI格式(上图)与原MIDI数据(下图)的对比,凸显了关键的差异:虽然原MIDI数据中漏掉了一拍(见下图),导致和弦伴奏断开,但由bGPT转换的结果(见上图)正确填补了这一缺失,确保了和弦伴奏的流畅性。


研究团队还将CPU建模作为硬件行为模拟的代表性任务:该任务要求模型接收低级机器指令序列作为输入,其目标是准确预测每个指令执行后CPU状态如何更新,直至程序停止。


在这个任务中,bGPT展现出超过99.99%的准确率,显示了字节模型在处理原生二进制数据方面的强大能力和可扩展性。



在提供了程序和初始CPU状态的情况下,bGPT能够准确地预测CPU执行的完整过程,直到程序终止。在这个示例中,bGPT精确地处理了所有CPU指令。为了便于理解,这里将实际的字节序列转换成了更易读的格式。


从字节到万物:突破边界,向着统一的数据建模进发


bGPT不仅能处理原生二进制数据,还能将多种数据类型融合进一个统一的模型架构中,视一切数据为字节序列。


这种方法不但简化了数据建模流程,还使得从任何数据源的整合变得轻而易举,且无需为特定数据类型定制模型。


研究团队在论文中举例了传统文本、图像及音频文件,展现了bGPT在统一数据建模方面的能力。他们训练的bGPT模型拥有约1亿参数。


实验结果表明,在与GPT-2(文本模型)、ViT(视觉模型)和AST(音频模型)等同规模模型的比较中,bGPT在不同数据类型上均展现出了可媲美的性能。


bGPT在文本生成方面的表现非常出色。得益于其字节级的文本编码,该模型无需依赖词汇表,从而能支持所有语言。


它的分层Transformer架构,尽管计算开销与GPT-2相近,却能生成长达8KB的文本,大大超出了GPT-2的长度限制。在经过Wikipedia数据进行预训练后,bGPT生成的文本在风格和主题上都与GPT-2不相上下,证明了其在文本生成方面的强大能力。


bGPT在Wikipedia数据集上进行预训练,生成的文本样例质量和主题一致性与GPT-2相当。


bGPT可以通过预测图像字节序列中的下一个字节来生成图像。该模型在ImageNet数据集上进行了预训练,生成的图像分辨率为32x32像素。


虽然在当前规模下,通过字节序列准确捕捉图像的二维空间关系有所困难,导致生成的图像存在伪影和噪点,但纹理和光影效果通常还是比较准确的。


此外,这些生成的图像均能被正常解码为BMP文件。研究团队指出,通过扩大bGPT的规模,类似于OpenAI开发的iGPT在像素序列建模方面的方法,或许可以实现更高质量、更逼真的图像生成。


这些是由在ImageNet数据集上进行预训练的bGPT生成的一组图像。虽然图像的纹理和光影效果通常比较准确,但在这些生成的图像中识别主要物体却有一定难度。


bGPT将音频数据视为字节序列,能生成1秒长、采样率为8000 Hz的音频样本。


该模型在LibriSpeech数据集上完成了预训练,并进一步在Speech Commands v2数据集上进行微调和演示。bGPT生成的音频样本保持了较高的准确度,其中一些样本几乎与真实音频无法区分。以下是展示bGPT在音频生成领域能力的示例集。


通过bGPT探索字节构成的数字世界


传统语言模型,不管它们有多强大,主要专注于处理自然语言文本。bGPT模型通过基于字节的处理机制,打破了这种仅限于文本处理的局限性,开辟了一个全新的数据处理范畴。


这一进步让bGPT有能力无缝地处理包括文本、图像、音频在内的各种数据类型,甚至能处理来自算法和硬件的原生二进制数据,为全面模拟和理解数字世界铺平了道路。


虽然bGPT展现出了引人注目的能力,但其在计算开销方面的局限性,如当前在常规显卡上仅能处理最大8KB的字节序列,对于那些需要生成或处理大量数据的应用来说,构成了明显的限制。未来的工作计划将集中在开发更高效的算法和利用硬件的进步上,旨在提高处理更大规模数据序列的能力。


全球的技术爱好者们已经开始展望bGPT未来的潜力,从网络修剪和自我学习的优化到超大规模网络的自我重构能力,这些讨论指向了一个共同的愿景:bGPT最终可能实现一个统一的模型,能够处理和输出所有类型的字节数据,真正成为数字世界的全面模拟器。



研究团队已将bGPT的代码和模型开源。这意味着你可以在自己的数据集上直接训练bGPT,无需做出任何模型架构上的调整,便可探索字节模型在数字领域的广阔前景。


参考资料:

https://arxiv.org/abs/2402.19155


文章来自于 微信公众号“新智元”


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT

2
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner