ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
超10秒高分辨率,北大Open Sora视频生成更强了,还支持华为芯片
5294点击    2024-04-08 15:56
北大团队联合兔展发起的 Sora 复现计划,现在有了新成果。


OpenAI 在今年年初扔出一项重大研究,Sora 将视频生成带入一个新的高度,很多人表示,现在的 OpenAI 一出手就是王炸。然而,众多周知的是,OpenAI 一向并不 Open,关于 Sora 的更多细节我们无从得知。谁能率先发布类 Sora 研究成了一个热门话题。


今年 3 月初,北大团队联合兔展启动了 Sora 复现计划 ——Open Sora Plan,该项目希望通过开源社区的力量复现 Sora。



项目上线一个月,星标量已经达到 6.6k。



  • 项目地址:https://github.com/PKU-YuanGroup/Open-Sora-Plan
  • 技术报告:https://github.com/PKU-YuanGroup/Open-Sora-Plan/blob/main/docs/Report-v1.0.0.md


现在这个项目终于有了新成果,Open-Sora-Plan v1.0.0 来了,新研究显著增强了视频生成的质量以及对文本的控制能力。研究者表示,他们正在训练更高分辨率(>1024)以及更长时间(>10s)的视频。目前该项目已支持国产 AI 芯片(华为昇腾 910b)进行推理,下一步将支持国产算力训练。


项目作者林彬表示:Open-Sora-Plan v1.0.0 可以生成1024×1024分辨率视频,也能生成10 秒、24 FPS 的高清视频。而且它还能够生成高分辨率图像。



下面我们看一下 v1.0.0 的效果(为了展示,动图进行了一些压缩,会损失一些质量)。


文本到视频生成


提示:海上的日落。


00:10



提示:黎明时分,宁静的海滩,海浪轻轻拍打着海岸,天空被涂上柔和的色调......



00:02



提示:沿海景观从日出到黄昏过渡的延时拍摄……




文本到视频生成的更多效果展示:



00:02



文本到图像生成(512×512 )



视频重建(720×1280)


00:24


00:17




图像重建(1536×1024):



在实现细节方面,通过团队放出的技术报告,我们得知模型架构 CausalVideoVAE 概览图如下所示:



CausalVideoVAE 架构继承自 Stable-Diffusion Image VAE。为了保证 Image VAE 的预训练权重能够无缝应用到 Video VAE 中,模型结构设计如下:



CausalConv3D:将 Conv2D 转换为 CausalConv3D,可以实现图像和视频数据的联合训练。CausalConv3D 对第一帧进行特殊处理,因为它无法访问后续帧。


初始化:Conv2D 扩展到 Conv3D 常用的方法有两种:平均初始化和中心初始化。但本文采用了特定的初始化方法 tail 初始化。这种初始化方法确保模型无需任何训练就能够直接重建图像,甚至视频。


训练细节:



上图展示了 17×256×256 下两种不同初始化方法的损失曲线。黄色曲线代表使用 tail init 损失,而蓝色曲线对应中心初始化损失。如图所示,tail 初始化在损失曲线上表现出更好的性能。此外,该研究发现中心初始化会导致错误累积,导致在长时间内崩溃。



训练扩散模型。与之前的工作类似,该研究采用了多阶段级联训练方法,总共消耗了 2048 A800 GPU 小时。研究发现,图像联合训练显着加速了模型收敛并增强了视觉感知,这与 Latte 的研究结果一致。



不过,目前发布的 CausalVideoVAE(v1.0.0)有两个主要缺点:运动模糊和网格效果。团队正在改进这些缺点,后续版本很快就会上线。


最后附上团队完整名单:


文章来自微信公众号“机器之心”,作者:机器之心