ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
「非常接近GPT-4」的WizardLM-2被微软紧急撤回,有什么内幕?
6891点击    2024-04-30 17:48

前段时间,微软搞了个乌龙:隆重地开源了 WizardLM-2,又在不久后撤回得干干净净。


据现在可以查到的 WizardLM-2 发布信息,这是一个「真正媲美 GPT-4」的开源大模型,在复杂聊天、多语言、推理和代理方面的性能得到了提高。


该系列包括三个模型:WizardLM-2 8x22B、WizardLM-2 70B 和 WizardLM-2 7B。其中:


  • WizardLM-2 8x22B 是最先进的模型,也是对高度复杂任务进行内部评估后得出的最佳开源 LLM。
  • WizardLM-2 70B 具备顶级推理能力,是同等规模的首选;
  • WizardLM-2 7B 是速度最快的,其性能可与现有的 10 倍大的开源领先模型相媲美。



此外,通过人类偏好评估,WizardLM-28x22B 的能力「只是稍微落后于 GPT-4-1106 预览版,但明显强于 CommandRPlus 和 GPT4-0314。」



它会和 LLaMa 3 一样,成为又一开源里程碑吗?


当大家忙着下载模型的时候,团队却突然撤回了一切:博客、GitHub、HuggingFace 全部 404。



图源:https://wizardlm.github.io/WizardLM2/


团队的解释是:



所有 Huggingface 的朋友们,大家好!很抱歉,我们删除了模型。我们已经有一段时间没有发布几个月前的模型了,所以我们现在不熟悉新的发布流程:我们不小心遗漏了模型发布流程中的一个必要项目 — 毒性测试。这是目前所有新模型都需要完成的一个步骤。

我们目前正在快速完成这项测试,然后将尽快重新发布我们的模型。不用担心,感谢关心和理解。



但 AI 社区对 WizardLM-2 的关注和讨论没有停止,疑点有几个:



第一,被删掉的开源项目不只是 WizardLM-2,该团队所有的 Wizard 系列工作都不见了,包括此前的 WizardMath 和 WizardCoder。



第二,有人质疑,删除模型权重的同时,为何连博客也删除呢?如果是只是缺少测试部分,没必要撤回得干干净净。




团队的解释是:「根据相关规定。」具体什么规定?目前没人知道。



第三,还有人猜测 WizardLM 背后的团队已经被解雇,撤回 Wizard 系列项目也是被迫的。



不过,这种猜测被团队否认了:



图源:https://x.com/_Mira___Mira_/status/1783716276944486751



图源:https://x.com/DavidFSWD/status/1783682898786152470


而且我们现在搜索作者的名字,也并没有从微软官网中完全消失:



图源:https://www.microsoft.com/en-us/research/people/qins/


第四,有人猜测,微软撤回这个开源模型,一是因为性能过于接近 GPT-4,二是因为和 OpenAI 的技术路线「撞车」了。


具体是什么路线呢?我们可以看一下当初博客页面的技术细节。


团队表示,通过 LLM 训练,自然界中人类生成的数据日益枯竭,而 AI 精心创建的数据和 AI Step-by-Step 监督的模型将是通往更强大 AI 的唯一途径。


过去的一年里,微软团队建立了一个完全由人工智能驱动的合成训练系统,如下图所示。



大概分为几个版块:



数据预处理:


  1. 数据分析:使用这个 pipeline 来获得新源数据的不同属性的分布,这有助于对数据有一个初步的了解。
  2. 加权采样:最佳训练数据的分布往往与人类聊天语料的自然分布不一致,需要根据实验经验调整训练数据中各属性的权重。



Evol Lab:


  1. Evol-Instruct:投入了大量精力重新评估了最初 Evol-Instruct 方法中存在的各种问题,并对其进行了初步修改,新方法能让各种智能体自动生成高质量的指令。
  2. Evol-Answer:引导模型多次生成和重写回复,可以提高其逻辑性、正确性和亲和力。


AI Align AI(AAA):


  1. 协同教学:收集 WizardLM 和各种授权开源和专有的最先进模型,然后让它们协同教学并相互提高,教学内容包括模拟聊天、质量评判、改进建议和缩小技能差距等。
  2. Self-Teaching:WizardLM 可以通过激活学习,为监督学习生成新的进化训练数据,为强化学习生成偏好数据。


学习:


  1. 监督学习。
  2. 阶段 - DPO:为了更有效地进行离线强化学习,将优选数据分割成不同的片段,并逐级改进模型。
  3. RLEIF:采用指令质量奖励模型(IRM)与过程监督奖励模型(PRM)相结合的方法,使得在线强化学习中实现更精确的正确性。


最后要说的是,任何猜测都是徒劳的,让我们期待一下 WizardLM-2 的复出吧。


本文来自微信公众号”机器之心“


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md