
航空发动机用上大模型:解决复杂时序问题,性能超越ChatGPT-4o实现SOTA|上交创智复旦
航空发动机用上大模型:解决复杂时序问题,性能超越ChatGPT-4o实现SOTA|上交创智复旦时序数据分析在工业监控、医疗诊断等领域至关重要。比如航空发动机监控这个复杂工业场景中,工程师需分析海量多通道传感器数据,以判断设备状态并制定维护决策。
时序数据分析在工业监控、医疗诊断等领域至关重要。比如航空发动机监控这个复杂工业场景中,工程师需分析海量多通道传感器数据,以判断设备状态并制定维护决策。
Agent能“看懂网页”,像人类一样上网?阿里发布WebDancer,就像它的名字一样,为“网络舞台”而生。
前段时间,沉寂了很久的Flux官方团队Black Forest Labs发布了新模型:FLUX.1 Kontext,这是一套支持生成与编辑图像的流匹配(flow matching)模型。FLUX.1 Kontext不仅支持文生图,还实现了上下文图像生成功能,可以同时使用文本和图像作为提示词,并能无缝提取修改视觉元素,生成全新且协调一致的画面。
总是“死记硬背”“知其然不知其所以然”?
随着 GPT-4o 展现出令人印象深刻的多模态能力,将视觉理解和图像生成统一到单一模型中已成为 AI 领域的研究趋势(如MetaQuery 和 BLIP3-o )。
一个真实世界模拟器。
GUI智能体总是出错, 甚至是不可逆的错误。 即使是像GPT-4o这样的顶级多模态大模型,也会因为缺乏常识而在执行GUI任务时犯错。在它即将执行错误决策时,需要有人提醒它出错了。
NVIDIA等研究团队提出了一种革命性的AI训练范式——视觉游戏学习ViGaL。通过让7B参数的多模态模型玩贪吃蛇和3D旋转等街机游戏,AI不仅掌握了游戏技巧,还培养出强大的跨领域推理能力,在数学、几何等复杂任务上击败GPT-4o等顶级模型。
AI两天爆肝12年研究,精准吊打人类!多大、哈佛MIT等17家机构联手放大招,基于GPT-4.1和o3-mini,筛选文献提取数据,效率飙3000倍重塑AI科研工作流。
Landbase 践行着Daniel Saks (萨克斯)称之为"氛围感市场进入"的策略,利用 AI 实现营销触达自动化。本周该公司宣布完成 3000 万美元 A 轮融资,由 Sound Ventures 与现有投资者 Picus Capital 共同领投,8VC、A*和 Firstminute Capital 等既有投资方跟投。