ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
「懂物理」是具身智能核心!北大高逼真物理仿真,加持磁性微米级机器人登Nature子刊
5690点击    2024-05-16 17:05

日前,北京大学智能学院可视计算与学习实验室陈宝权教授团队与苏黎世联邦理工学院健康科技系转化医学研究所Simone Schürle-Finke教授团队展开合作,首次使用物理模拟技术辅助可编程磁性微米级机器人的制造。


相关研究论文《Programming Structural and Magnetic Anisotropy for Tailored Interaction and Control of Soft Microrobots》发表在Nature子刊《Communications Engineering》上[1],并作为编辑精选获得了为期一个月的首页推荐。



20世纪60年代,科幻片《神奇旅程》(Fantastic Voyage)第一次用影像向人们描绘了「微型医生」的场景:利用微缩科技进入人体内部修复受损的细胞。


半个多世纪过去,这一由美国著名物理学家Richard Feynman所提出的大胆设想正在一步步走向现实。


或许在不远的将来,使用微型机器人监测人体健康情况、及时识别与消融肿瘤等病灶将成为人们习以为常的医疗手段。



为了实现信息时代这一重要技术突破,由Schürle等生命科学工作者和陈宝权等智能计算科学专家组成交叉研究团队,正在不懈探索、稳步推进。


由于人体内部环境的复杂精密,微型机器人在生物医药领域的应用长期以来受到广泛的重视。


为了适应血管环境、进行生物传感以及药物输送等精细化作业,除尺寸必须限于微米级别外,机器人还必须具备形态多样、可无接触控制等特点。


由此,21世纪以来,设计制造在磁、光、声等信号的刺激下能作出反应的微型软体机器人成为了科学家们关注的焦点。



在各种微机器人的驱动方式中,磁驱动方法由于其可穿透性和对生命体无害性而备受青睐。


然而,受制于各向同性的结构特征,既有的磁性微型机器人存在运动模式单一且缺乏交互的问题,从而极大地限缩了应用价值。


对此,陈宝权和Schürle的团队提出了一种在物理模拟引导下的通用策略以改进大规模磁微机器人的制备:利用特定磁场中的光聚合,使机器人的结构呈现各向异性,从而微机器人集群能够随着外加磁场方向和强度的改变而作出精确的反馈、产生丰富的行为。



磁各向异性微机器人的仿真、制备与分析


为了探究结构和磁各向异性对混合微机器人群体行为的影响,北京大学研究者运用格子玻尔兹曼方法以及磁偶极相互作用模型,对微机器人的流体动力学和磁化过程进行模拟。


  • 格子玻尔兹曼方法作为一种高效计算流体动力学的手段,可处理涉及复杂边界条件和流固耦合的问题;

  • 磁偶极相互作用模型则致力于描述微机器人间的磁性相互作用,并考虑了微机器人相互磁化的动态影响。


借助这两种模型,研究团队得以深入探讨不同结构和磁性各向异性对微机器人群体运动和组装的影响,并实现对群体运动的有效控制。




既往的大规模制备方法仅能产生磁各向同性的微机器人,难以兼顾高通量、高精度及高可控性,限制了其运动与集群行为的控制。


苏黎世联邦理工学院研究者采用液滴微流控技术和光聚合方法,结合外部磁场引导,能够制备出具备可编程结构和磁性各向异性的机器人:


  • 首先,将含有磁性纳米颗粒(MNPs)和聚乙二醇二丙烯酸酯(PEGDA)的水相与含有表面活性剂的油相通过流动聚焦形成液滴,其大小和形状可通过流速和通道结构调控。

  • 随后,将液滴置于不同类型的磁场中,使得 MNPs 在液滴内部形成链状、盘状、束状等不同结构,从而赋予液滴磁性各向异性。

  • 最终,通过紫外光引发聚合反应,将液滴中的 PEGDA 交联成水凝胶,固定 MNPs 结构,得到具备结构与磁性各向异性的机器人。


该制备方法高效、可扩展且灵活,能够实现对微机器人多维度的调控,为其在生物医学领域的应用提供了新的可能性。




具身智能体的高逼真物理仿真与制造


作为一种具身智能体,微型机器人以对环境的感知与反馈为主要特征。陈宝权教授指出,透过物理模拟,研究人员能够提前「预见」和评估所设计机器人的可能运动模式和能力。


近年来,陈宝权教授团队持续将目光投射到具身智能体的物理仿真上,其中尤以对磁相关现象的物理模拟与可视化为典型代表,在这方面获得了国际上广泛的关注和合作。


自2020年已来,已有五篇相关论文问世,除前述Nature子刊文章外,均录用至计算机图形学顶刊ACM Transactions on Graphics,并在顶会ACM SIGGRAPH/SIGGRAPH Asia上宣读。


首先,团队研究磁铁、磁泥、磁流体等磁性物质在磁场作用下运动的正向解算。综合运用水平集法、物质点法、边界元法,陈宝权团队研发了多种可以快速、准确地模拟动态磁现象的数值算法。


其中,水平集法从第一性原理出发,精准还原了磁流体的Resensweig不稳定性现象[2],并能通过引入边界积分方程获得两个数量级的解算速度提升[3];基于牛顿迭代与物质点法的磁性材料模拟能够在正确处理碰撞和接触的同时,将磁化模型从线性拓展到非线性[4]。




除了对磁性物质运动的正向模拟外,陈宝权团队的工作也涉及相关运动的控制和优化。


例如,通过设计带有硬磁性磁滞回线的薄壳软体机器人并运用伴随方法不断梯度下降,团队成功在计算机中复现了麻省理工学院的磁性机器人真实实验结果,并验证了满足该近似条件的机器人所具有的各种形态运动(如爬坡、越障、弹跳等)的能力[5]。


这种基于所谓「时空优化」的技术路线,成为辅助设计与制备小微机器人的基石。





在先前的工作中,物理模拟技术被用于定性和定量地分析不同内部结构的磁性微机器人的动力学特性,但用于辅助微机器人的实际制造尚属首次。


「但是,实现磁性微型机器人的产业化仍有一段路程要走」,陈宝权坦言。


要在实验室环境中找到适应规模化生产、具有高可控性和多行为模态的机器人构型,必须继续提升测试和迭代的效率。


因此,使用物理模拟技术搭建虚拟实验平台进行设计与优化迭代至关重要。


「只有打破学科壁垒,将图形学物理模拟计算与生命科学等其他学科进行深度交叉合作,才能指数级地压缩研发时间,实现仿真与制造一体化设计」,陈宝权强调。


本文来自微信公众号”新智元“




关键词: 具身智能 , AI , AI物理 , AI机器人
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md