ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
中国大模型价格战背后的真相
7987点击    2024-05-23 20:04

5 月 21 日上午,阿里云在其例行峰会上,意外地释放了大降价的消息:通义千问 GPT-4 级主力模型推理输入价格降至 0.5 元/百万 tokens,直降 97%。



阿里云降价公告 | 来源:阿里云


这个大幅度降价的消息瞬间引发了与业界的普遍关注和讨论,但短短数小时连锁反应出现了,百度智能云官宣文心大模型主力模型 ERNIE Speed(上下文长度 8K、128K)、ERNIE Lite(上下文长度 8K、128K)免费。虽然这两个模型和阿里宣布降价的模型并不完全对应,但是这个动作让很多人开始高呼中国大模型企业的 API 商业模式,难道就这样在 3 小时内就消失了吗?



文心大模型两大主力模型全面免费


实际上在更早之前,字节跳动宣布,豆包通用模型推理输入价格为 0.8 元/百万 tokens。


虽然这些价格背后在并发量,模型能力上有很多不同的细节区别,甚至根据创业者的实际计算,真正落到业务里用起来,各家的成本下降都没有宣传上那么夸张。


但至少纸面上看,每百万 token 推理输入量,字节、阿里、百度先后在一周内官宣了 0.8 元,0.5 元和免费的报价。有业界人士甚至开玩笑说,眼瞅着下一家跟进的厂商可能就得发钱补贴让客户用 API 了,在这么短的时间内产生这样剧烈的变化,到底是因为什么?这是一次市场宣传上的内卷?还是大模型 API 调用的商业模式,就真的这么消解了吗?


01 价格战背后,大模型API 调用的商业模式


其实最早 ChatGPT 发布时,大家对大模型直接作为服务被调用的商业模式有很大期待。毕竟,与上一波 AI 烟囱式的项目交付方式相比,大模型带来了更通用的 AI 能力,作为标准化服务被调用,道理上也说得通。


就拿 OpenAI 来说,有两大商业化手段,一是像 ChatGPT Plus 20 美元/月这样的会员订阅模式,另一个是开发者 API 调用服务。在这两大标准化服务的拉动下,2023 年 12 月 31 日,The information 爆出 OpenAI 的年度经常性收入(Annual Recurring Revenue,ARR)已经达到了 16 亿美元。


但即便强如 OpenAI 的模型能力,这个体量的营收相比其百亿美金级别的研发成本而言,目前看也还是杯水车薪。


事实上,只提供模型的 API,距离 AI 应用在场景中落地还有很大距离,大部分 AI 应用还需要在一个通用的模型 API 之上,在场景里喂数据、做微调等来优化模型引擎。看到这一瓶颈后,国内大模型厂商在过去一年也做了一系列探索来降低 AI 应用的门槛,以期扩大大模型的调用量。


以百度智能云为例,去年相继推出模型开发工具 Model Builder 和 AI 应用开发 AppBuilder、更具效价比的不同模型等,但模型的调用增长似乎依然有限。今年 4 月,百度智能云推出生态打法,和有渠道、场景的供应商一起合作服务客户,旨在进一步拉升文心大模型标准化的 API 调用量。这些迹象上看,大厂们显然并没有真的准备放弃 API 调用的商业模式,但这个商业模式还没有真正收到成规模的钱,倒是真的问题。


上周,百度最新公布的数据显示,文心大模型日处理文本 2500 亿 token,另一大厂字节跳动日均处理 1200 亿 token 文本,但其中很大一部分是大厂内部业务在调用做 AI 应用和业务探索。


可以看出,尽管模型厂商做了很多尝试,但标准化的模型 API 并没有迎来确定性的增长。


这是本周大厂模型推理价格降低的大前提和背景。理解了模型 API 调用的需求现状,也就不难理解这一波降价动作——降价并没有真的损失多少收入,不如激活下市场,赚个吆喝,促进很多企业从「免费试用」开始下水,早点启动对 AI 进入业务流的尝试。


其实,这一波降价的连锁反应,真正的源头并不是阿里云,也不是字节跳动,比大厂降价更早的,是一家创业公司。


5 月 6 日,国内创业公司幻方旗下的大模型公司「深度求索」开源了第二代 MoE 模型:DeepSeek-V2,主打参数更多、能力更强、成本更低。


由于 DeepSeek 的技术优势在全球大模型圈子得到了普遍好评,而其在模型能力逼近第一梯队闭源模型的前提下,还把推理成本降到了 1 块钱/百万 token,也就是说,成本是 Llama3 70B 的七分之一,GPT-4 Turbo 的七十分之一。而且,DeepSeek v2 还能做到有利润,这显然是是模型架构、系统、工程的一系列进步带来的成本降低。


这一信息在实际做模型应用的产业界引起了广泛讨论,在海外也引起了不小的波动,半导体和人工智能独立研究机构 SemiAnaysis 称其性能直逼大模型 GPT-4 所代表的第一梯队,同时推理价格相当低,是不可小觑的中国力量。


DeepSeek v2 宣布其价格为 1 元/百万 token 后,随即引来了大模型价格战,智谱、面壁、字节、阿里、百度,以及今天跟进的科大讯飞、腾讯云相继宣布了模型推理价格降低。


对于各家不同的降价策略,已经有一些质疑声音称一些降价的模型本身吞吐量就低,而高性能模型并没有降价。并且还有很多细节条款会让最终企业用起来没有宣传的那么便宜,从这个角度看,降价更多是模型厂商出于市场和品牌的考量,进行的一波内卷。


归根结底,能形成价格战的连锁反应,也是当前各大模型的能力放在可用的场景中,尚未拉开差距,用户甚至有免费开源的产品可以用。


一位 SaaS 厂商创始人向极客公园表示,「对我来说用谁的其实无所谓,因为他们最后跑得都差不多,当把时间线拉长来看,最后这些厂商提供的模型 API 服务,99.9% 的概率跟今天的云是差不多的概念。另外,如果一个通用的模型 API 无法深度适配场景,还是要自己基于开源模型,用场景数据做专门的深度训练,也不会接通用的模型 API。」


最终的的客户需求,其实是端到端的诉求,是可以用、可以看到效果的东西,而不是模型调用。


02 大模型,巨头和创业公司有不同的游戏


当然,模型推理价格降低本身也是技术发展带来的必然结果,有一系列工程、架构、系统手段可以持续优化。今天凌晨微软 Build 开发者大会上,纳德拉还举例解释了这一趋势。他说,过去一年 GPT-4 性能提升了 6 倍,但成本降低到了之前的 1/12,对应性能/成本提升了 70 倍。


「难的是探索模型能力上限,至于模型推理价格一定有办法降低」,Minimax 创始人严俊杰上周坐客极客公园直播节目中表述了这一技术趋势,他表示,模型推理价格降低到可用,在学术界已经发生过三次了,这不难。


模型技术的攀升,才是 API 调用商业模式能继续增长的前提。其实细看今天宣布降价的模型产品也是一样,真正大规模、高性能、支持高并发的模型推理还是要收费,降价幅度是有限的。


但长期来看,API 模式最终考验的还是模型能力,如果技术拉不开差距,价格也一定拉不开差距,最终模型调用的价值会被稀释,虽然依旧是重要的基础设施,但价值大小就从油变水了。


换一个角度看,今天一个通用的模型 API 可能不是迫切的需求。就像 Lepton.ai 的创始人贾扬清在朋友圈表达的观点,「站在整个 AI 业界的角度我想说,降价是个拍脑袋就可以做的简单策略,但是真正的 To B 商业成功更难。」今天企业在使用 AI 的时候,并不是成本驱动的,「今天不是说 API 贵才没有人用,而是因为要搞清楚,到底怎么用起来产生业务价值」。


从这个角度看,如何把大模型能力推动到企业的业务里的很大一部分任务,可能又回落到传统 SaaS 厂商(用 AI 升级产品之后)手里,需要他们作为智能生产力的「干线物流」+「前置仓」,输送到各个场景中。


随着模型 API 直供模式的高度内卷,巨头其实已经在向能交付价值的 SaaS 看,微软今天宣称 GitHub Copilot 订阅者已经有 180 万付费用户。谷歌近日也正在与 CRM 营销巨头 Hubspot 谈高达 300 亿美金收购可能性,因为前者可能会利用这次收购来加强其在 AI 领域产品整合。


对于巨头而言,模型技术和实际场景,两个都要抓,才能有规模化的收入。但归根结底,模型能力和别人拉开距离,才是 API 模式可以产生价值的「华山一条路」的挑战。


而对于大模型创业公司而言,也是个「华山两条路」的局面,即要么做出比大公司更好的模型技术,要么从模型走向产品,直接创造价值。


智能的能力不会是免费的,但是怎么规模化的创造价值,巨头和创业公司,都还在寻找答案。


文章来源于“极客公园”,作者“宛辰



AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

2
无人直播

【开源免费】VideoChat是一个开源数字人实时对话,该项目支持支持语音输入和实时对话,数字人形象可自定义等功能,首次对话延迟低至3s。

项目地址:https://github.com/Henry-23/VideoChat

在线体验:https://www.modelscope.cn/studios/AI-ModelScope/video_chat


【开源免费】Streamer-Sales 销冠是一个AI直播卖货大模型。该模型具备AI生成直播文案,生成数字人形象进行直播,并通过RAG技术对现有数据进行寻找后实时回答用户问题等AI直播卖货的所有功能。

项目地址:https://github.com/PeterH0323/Streamer-Sales