ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
成立1年估值超100亿、红杉软银争投,这家人形机器人公司做对了什么?
9190点击    2024-07-16 20:16

机器人行业的「GPT-3」时刻已经出现?



具身智能,或者说人形机器人,现在已经成为仅次于 AI、最热门的投资项目。无论是 OpenAI、英伟达或者是微软,都在砸下重金投资人形机器人团队。 


现在,一个种子选手,正在获得巨头们的青睐。 


近日,一家名为 Skild AI 的公司,宣布完成 3 亿美元的 A 轮融资,投资者包括杰夫·贝佐斯、日本软银集团、红杉资本和卡内基梅隆大学等,使该公司估值达到 15 亿美元。 


这家公司才成立不到一年,由两名机器人领域的大学教授创立,其团队正在构建一个「可扩展的机器人基础模型」,作为各种类型机器人和各种现实应用场景的通用「大脑」,同时还在构建可以改装到机器人硬件上的系统。 


该公司称,「我们的长期目标是开发基于物理世界的通用人工智能(AGI),挑战 AGI 只能从数字知识中产生的流行观念。」 


投资人为此迅速投钱,认为机器人行业的「GPT-3 时刻即将到来」。 


Skild AI 到底做对了什么?它能实现 AI+具身智能的野心吗? 


01「机器人大模型」


Skild AI 由卡内基梅隆大学教授 Deepak Pathak 和 Abhinav Gupta 于 2023 年 5 月创立,正在开发基于物理世界的智能系统,构建机器人基础模型——可以理解为「机器人大脑」。 


他们在做的东西有什么特别?传统机器人技术侧重于收集特定数据,来训练机器人以完成特定任务,而 Deepak 和 Abhinav 则利用大规模数据,通过基于 Transformer 的自适应架构构建基础模型,想要创建的是一个通用、鲁棒且具备涌现行为的机器人模型。 


这家公司称,自己正在突破机器人数据壁垒,其训练模型的数据量「是竞争对手模型的千倍以上」。与那些为特定应用垂直设计的机器人不同,Skild 的模型作为各种机器人形式、场景和任务的「通用」大脑,涵盖操作、移动和导航等功能。 


在现实世界应用中,从在恶劣物理中具备韧性的「四足机器人」,到能够进行复杂家庭和工业任务的「人形机器人」,该公司的模型据称都能用上。 


那么,在理论上,这种「机器人大脑」可以为波士顿动力公司的四足机器人「Spot」以及 Agility Robotics 的人形机器人「Digit」提供「动力」,尽管公司尚未宣布具体合作伙伴。 



构建「通用的」机器人基础模型| 图片来源:Skild AI 


Skild AI 称自己的使命是「通过开发首个真正智能的实体系统,彻底改变未来的体力工作,旨在提升生产力和挖掘人类潜力。」愿景是「建立扎根于物理世界的通用人工智能(AGI)」。 


尽管全球不少人都担心 AI 或机器人抢工作,做机器人的公司普遍还是喜欢说自己要解决所谓的「劳动力短缺问题」,抑或者更高远的「解放人类」。 


Skild AI 显然也不例外。 


他们对外强调的说法是,以美国为例,目前面临着严重的劳动力短缺,空缺的工作岗位比失业人数多出 170 万个。医疗保健、建筑、仓储和制造业等行业受影响最严重,预计到 2030 年将有 210 万个制造业职位空缺。 


此外,许多这些工作对人类来说可能是危险的,例如石油钻井平台和机器房。而 Skild 的模型使机器人能够适应在危险环境中执行新任务,而不是由人类执行这些任务。 


Skild AI 的联合创始人 Abhinav Gupta 称,「通用机器人能够在任何环境下、安全地执行任何自动化任务,并具备任何类型的实施形式,我们可以扩展机器人的能力,降低其成本,并支持严重人手不足的劳动力市场。」 



Skild AI 称该大脑可以适应各种硬件和任务 |Skild AI 


机器人行业的人常说「机器人技术很难」,这几乎成了支配该领域的无名自然法则之一。 


而且,不少人认为机器人是一个硬件问题,但 Skild AI 的创始人却认为这是一个软件问题。 


Skild AI 强调「规模是关键」,并表示他们正在发明最前沿的机器学习算法,「重点是利用规模的力量,在任何环境中提供无与伦比的鲁棒性。从建筑工地到工厂再到家庭,Skild Brain 能像人类一样适应非结构化环境。」 


这个「Skild Brain」,就是所谓的大脑,据称是「首个可扩展的」机器人基础模型,可以适应不同的硬件和任务,「在模型设计上具有鲁棒性。」 


该公司还披露了一个 Skild AI 移动操控平台,由 Skild Brain 提供动力,在这个平台上「可以开发用于机器人的高级 AI 算法和应用程序」,他们想要「使机器人操作像调用 API 一样简单」。目前,该平台尚未开放,仅允许感兴趣的开发者注册,加入早期访问等待名单。 


此外,他们推出了一个安全/检查机器人平台,称提供自动化视觉检查、数据收集或巡逻任务的解决方案。 



Skild AI 的创始团队 |图片来源:Skild AI 


今年 7 月,Skild AI 宣布完成 3 亿美元的 A 轮融资,融资由 Lightspeed Venture、Coatue、软银集团和杰夫·贝佐斯(通过 Bezos Expeditions)领投,Felicis Ventures、红杉资本、Menlo Ventures、General Catalyst、CRV、亚马逊、SV Angel 和卡内基梅隆大学参与了本轮融资。这次融资使公司的估值达到 15 亿美元。 


Skild AI 表示,将利用这笔新资金改进其 AI 模型,同时追求商业化落地部署。长期目标是创造一种「具有与人类同等能力」且「扎根于物理世界」的 AGI。 


其首席执行官兼联合创始人 Deepak Pathak 称:「我们相信 Skild AI 代表了机器人技术扩展方式的一个转折点,具有改变整个实体经济的潜力。」 


02 印度机器人大神创业


根据公司网站显示,Skild AI 正在招聘多个工程师岗位。目前团队包括来自 Meta、特斯拉、英伟达、亚马逊和谷歌背景的成员,以及卡内基梅隆大学的学生。 


两名联合创始人 Deepak 和 Abhinav,都曾是卡内基梅隆大学的教授,在机器人和 AI 领域有多年研究经验,以其在自监督机器人技术、好奇驱动的智能体和自适应机器人学习等领域的研究闻名。 


如果要量化其学术水平,他们两人目前拥有 150+的 H 指数,超过 90000 次引用。 



Skild AI 联合创始人 Deepak(左)和 Abhinav(右)|图片来源:Skild AI 


Deepak 来自印度的一个小镇,在同龄人搬到大城市备战全国考试时,他留在小镇,仍然考上了印度理工学院(即 ITT),这是印度国内的最高学府,这一成就还登上了当地头条。 


据称,在印度时,由于缺乏条件,他还曾在家里用纸手写代码并检查,然后在当地咖啡馆有限的上网时间里运行他编写的程序。后来这个印度的「小镇传奇」就赴美国读博,期间加入 Facebook AI 研究院(FAIR)做研究,还创办过一家被收购的初创公司,后来选择当教授。 


Abhinav 则是卡内基梅隆大学的终身教授,和 Deepak 同为印度裔,曾是 FAIR 机器人研究组的创始成员和研究负责人。他和 Deepak 讨论了十年创业的可能性。2023 年初,他们看到了自己领域技术进步的加速,意识到是时候出来大干一场了。 


那么,他们看到的机会具体是什么?在追求为机器人构建通用智能的过程中,关键挑战一直是如何在没有大规模数据的情况下,构建一个大型模型。 


与大型语言模型不同,机器人领域没有现成的互联网数据。因此,他们探索了从现有资源中学习的不同策略:在线视频、远程操作、现实世界数据、模拟等。 


2015 年,他们首次实现了机器人数据的 1000 倍扩展,随后几年,他们尝试了人类远程操作和低成本机器人远程操作平台。2017 年,他们提出了著名的好奇心驱动学习算法,用于构建能够自主探索和学习的智能体。2021 年和 2022 年,他们再次突破,采用大规模自适应 SIM2REAL(虚拟到现实世界训练)策略,并在机器人学习会议上获得最佳机器人系统奖。 


这些成就,奠定了 Skild AI 的目标:一个通用模型,能够在任何环境中完成任何任务,而无需特定训练。有投资方认为,如果 Deepak 和 Abhinav 能实现这一目标,他们将取得类似 GPT-3 的突破,结果可能适用于几乎所有领域。 


03 机器人的「GPT-3 时刻」?


卡内基梅隆大学现任机器人研究所所长 Matthew Roberson 为他们站台背书称,「Skild AI 由站在机器人技术创新前沿的的专家创立,我迫不及待地想见证他们的尖端技术如何彻底改变行业,并延续卡内基梅隆大学在转化研究方面的悠久历史。」 


其他投资方也不吝吹捧,似乎对 Skild AI 的能力和前景充满信心。他们大多看中的是两名创始人对世界上一些先进机器人和 AI 实验室的贡献。 


在过去几年,互联网偶尔会被机器人极限跑酷、用手操控物体(包括开门和抽屉)、爬楼梯(无论是前进还是后退,室内还是室外)、以及自然流畅移动的机器人震撼一下,而这些进步,据称背后都可以追溯到两人的一些学术成果。 


有的投资人称他们是机器人技术进步的「催化剂」,认为「他们在将基础模型的核心原则应用于现实世界方面的创新,使行业走上了通用机器人技术的道路。」 


有的投资人提出,Skild AI 在构建机器人操作和移动的基础模型方面,「采用了真正可扩展的方法」,「他们革命性地改变机器人技术,从预编程机器人转向动态自适应机器人,这有可能颠覆整个实体经济。」 


还有投资方已经投资机器人公司超过 15 年,称 Skild 是其见过「最具远见的」,「他们正在构建的模型将在任何环境、任何硬件上执行任何任务。」 


在 Felicis Ventures 的投资人看来,开发通用机器人智能的竞赛已经开始,没有任何一个想法能像现在这样快速地动员资本和人才,通用机器人基础模型将成为这一链条中的关键环节。 


创造一个能够在任何环境中、任何形式上进行推理、规划和行动的「单一模型」,这个想法并不新鲜,一直是机器人行业想要夺取的圣杯,「这个想法的问题在于,几年前它根本不可能实现。而今天,它可能成为现实。」Felicis Ventures 的投资人如此称。 


「当我们第一次飞往匹兹堡观看 Skild 机器人实际操作时,我们简直不敢相信自己的眼睛。一个初创公司在如此短的时间内怎么可能取得如此大的成就?」 


「答案在于规模。大型预训练视觉语言动作模型(VLA)展现出与大型预训练语言模型(LLM)相同的涌现行为,正如在代数上训练一个 LLM 使其在西班牙语上表现得更好。」Felicis Ventures 的投资人认为「Skild 正在将这一理念推向极致。」 


Skild 正在做和想要实现的,就是通过所谓千倍以上的训练数据量,让机器人从没见过的任务也能执行到位,该投资人称已经看到了迹象。 


红杉资本的投资人也声明称,对 Skild AI 的团队充满「深刻的信念」,说他们「有潜力在现实世界中实现 OpenAI 在数字世界中所取得的成就。」 


信念的一个证明是,飞速给钱。见完创始人不到一周时间内,红杉资本就拍板决定投资 Skild AI,认为这个团队就是他们追求的,称「GPT-3 时刻即将到来,将为机器人世界带来巨大变革,就像我们在数字智能世界中看到的进步一样。」 


这些投资人认为,虽然关于 AI 对人类生活影响的讨论非常热烈,但迄今为止,大量讨论仍然主要集中在软件上,而将 AI 整合到机器人中则潜藏着巨大的机会,AGI 不是只能通过数字知识来构建。虽然一切都处于早期阶段,但利用 LLM、VLM 和代码生成的进步,机器人制造商有机会开发更智能的机器。 


「想象这样一个世界:一个 AI 机器人基础模型能够在任何环境、任何机器人硬件上完成任何任务。这将大大扩展我们可以构建的机器人类型,并且成本将比今天低几个数量级。」 


随着软件领域的 AI 成为巨头的游戏,以及将 AI 整合到机器人的前景和吸引力。 


一波 AI 热钱,已经转向机器人领域。 


文章来源于“极客公园”了,作者“芯芯


关键词: AI , AI机器人 , 具身智能 , Skild AI
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md