ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
专治大模型“刷题”!贾佳亚团队新基准让模型只挑错不做题,GPT-4得分不到50
9058点击    2024-07-18 17:21

大模型测试能拿高分,实际场景中却表现不佳的问题有解了。


贾佳亚团队联合多家知名高校提出了一种全新的测评方法,让一些模型立马现出了原型。


这下不用担心大模型“刷题”太多,测试集无法体现真实水平了。


这个新的测评数据集叫做MR-Ben,利用的是GSM8K、MMLU等数据集中的现有题目。


只不过,大模型在测试中的身份从“答题学生”变成了“阅卷老师”,任务是要给已有的解答步骤指出错误


这样一来,模型无法再通过背诵或猜测撞对题目,测试题泄露也无需担心了。


利用MR-Ben,贾佳亚团队评测了GPT4-Turbo、Cluade3.5-Sonnet、GLM4、Qwen2-70B等许多开源和闭源模型。


目前,该数据集涉及的所有代码和数据均已开源。


熟悉的试题,全新的任务


目前,大模型测试的主流方向是使用人类的标准化考试——选择题和填空题的方式去进行大模型评测。


这套测试方式的优点是标准明确、指标直观,且量化结果天然具有话题性。


但作者认为,由于现在的大模型普遍采用逐步作答的思维链方式生成最终答案,导致这种方式并不“靠谱”。


预训练模型在预训练时早已见过数以万亿级别的token,很难判断被评测的模型是否早已见过相应的数据,从而通过“背题”的方式回答正确。


而因为评测的方式主要靠检查最终的答案,因此模型是否是基于正确的理解推理选出正确的选项,也不得而知


尽管学术界不断地对诸如GSM8K、MMLU等数据集进行升级改造,如在GSM8K上引入多语言版本的MGSM数据集,在MMLU的基础上引入更难的题目等,依然无法摆脱选择或填空的窠臼。


并且,这些数据集都已面临着严重的饱和问题,大语言模型在这些指标上的数值已经见顶,并逐渐丧失了区分度。


为此,贾佳亚团队联合MIT、清华、剑桥等多家知名高校,与国内头部标注公司合作,标注了一个针对复杂问题推理过程的评测数据集MR-Ben。



MR-Ben基于GSM8K、MMLU、LogiQA、MHPP等大模型预训练必测数据集的题目,进行了“阅卷式”的范式改造,生成的新数据集更难、更有区分度,更能真实地反映模型推理能力!


不用重新找题出卷,也不用把题目变形来测试模型的鲁棒性,MR-Ben直接让模型从“答题者”变成“阅卷者”,对数据集中已有的答题过程进行评判,通过让大模型当老师来测试它对知识点的掌握情况!


具体来说,贾佳亚团队针对市面上主流的评测数据集GSM8K、MMLU、LogiQA、MHPP等数据集进行整理,并分成了数理化生、代码、逻辑、医药等多个类别,同时区分了不同的难度等级。


针对每个类别、收集到的每个问题,团队精心收集了对应的分步解题过程,并经由专业的硕博标注者进行培训和标注。


标注过程中,解题过程是否正确、出错的位置、出错的原因都会被细致指出,比对大模型的阅卷结果和人类专家的阅卷结果,就能知道模型对知识点的掌握情况。



从评测方式来看,MR-Ben所提出的方法,需要模型对于解题过程的每一个步骤的前提、假设、逻辑都进行细致分析,并对推理过程进行预演来判断当前步骤是否能导向正确答案。


这种“阅卷”式的评测方式从难度上远超于仅答题的评测方式,但可有效避免模型背题所导致的分数虚高问题。而只会背题的学生很难成为一名合格的阅卷老师。


GPT4-Turbo表现最佳


贾佳亚团队针对目前几款知名的大模型进行了评测,部分模型有多个版本参与测试。



可以看到,闭源模型中,GPT4-Turbo的表现最佳(虽然在“阅卷”时未能发现计算错误),在绝大部分的科目里,有demo(k=1)和无demo(k=0)的设置下都领先于其他模型。


智谱团队的GLM模型表现在榜单中位列第二,超过了Claude最新的3.5-Sonnet。


不过不同模型间的区分度较大,最强的GPT4-Turbo在MR-Ben数据集上获得的成绩也不到50分,可以看出其表现仍未饱和。



另外,一些表现较强的开源模型,效果已经赶上了部分商用模型。



除此之外,MR-Ben团队在工作过程中还发现了一些有意思的现象,例如:


  • 低资源场景下,小模型也有不少亮点,MR-Ben评测中Phi-3-mini在一众小模型里脱颖而出,甚至高于或持平几百亿参数的大模型,展现出了微调数据的重要性。

  • MR-Ben场景包含复杂的逻辑解析和逐步推断,Few-shot模式下过长的上下文反而会使得模型困惑,造成水平下降的后果。

  • MR-Ben评测了不少生成-反思-重生成的消融实验,查看不同提示策略的差异,发现对低水平的模型没有效果,对高水平的模型如GPT4-Turbo效果也不明显。反而对中间水平的模型因为总把错的改对,对的改错,效果反而略有提升。

  • 将MR-Ben评测的科目粗略划分成知识型、逻辑型、计算型、算法型后,不同的模型在不同的推理类型上各有优劣。

贾佳亚团队已在github上传一键评测的方式,测试一次消耗的token量大约为12M,开发者可以在自家的模型上评测并提交,MR-Ben团队会及时更新相应的leaderboard。


文章来源于“量子位”,作者“关注前沿科技


关键词: 大模型 , 模型测试 , AI , 贾佳亚 , GPT-4
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner