继分不清9.11和9.9哪个大以后,大模型又“集体失智”了!
数不对单词“Strawberry”中有几个“r”,再次引起一片讨论。
GPT-4o不仅错了还很自信。
刚出炉的Llama-3.1 405B,倒是能在验证中发现问题并改正。
比较离谱的是Claude 3.5 Sonnet,还越改越错了。
说起来这并不是最新发现的问题,只是最近新模型接连发布,非常热闹。
一个个号称自己数学涨多少分,大家就再次拿出这个问题来试验,结果很是失望。
在众多相关讨论的帖子中,还翻出一条马斯克对此现象的评论:
好吧,也许AGI比我想象的还要更远。
有人发现,即使使用Few-Shot CoT,也就是“一步一步地想”大法附加一个人类操作示例,ChatGPT依然学不会:
倒是把r出现的位置都标成1,其他标成0,问题的难度下降了,但是数“1”依旧不擅长。
为了教会大模型数r,全球网友脑洞大开,开发出各种奇奇怪怪的提示词技巧。
比如让ChatGPT使用漫画《死亡笔记中》高智商角色“L”可能使用的方法。
ChatGPT想出的方法倒是也很朴素,就是分别把每个字母写出来再一个一个数并记录位置,总之终于答对了。
有Claude玩家写了整整3682个token的提示词,方法来自DeepMind的Self-Discover论文,可以说是连夜把论文给复现了。
整个方法分为两大阶段:先针对特定任务让AI自我发现推理步骤,第二阶段再具体执行。
发现推理步骤的方法简单概括就是,不光要会抽象的思维方法,也要具体问题具体分析。
这套方法下,Claude给出的答案也非常复杂。
作者补充,花这么大力气解决“数r问题”其实并不真正实用,只是在尝试复现论文方法时偶然测试到了,希望能找出一个能用来回答所有问题的通用提示词。
不过很可惜,这位网友目前还没公布完整的提示词。
还有人想到更深一层,如果要计算文档中straberry出现多少次怎么办?
他的方法是让AI想象有一个从0开始的内存计数器,每次遇到这个单词就往上加。
有人评论这种方法就像在用英语编程。
那么究竟有没有大模型,可以不靠额外提示词直接答对呢?
其实不久之前有网友报告,ChatGPT是有小概率能直接答对的,只不过不常见。
谷歌Gemini 大概有三分之二的概率能答对,打开“草稿”就能发现,默认每个问题回答三次,两次对一次错。
至于国内选手,在提问方式统一、每个模型只给一次尝试机会的测试下,上次能正确判断数字大小的,这次同样稳定发挥。
字节豆包给出了正确回答,还猜测用户问这个问题是要学习单词拼写吗?
智谱清言的ChatGLM,自动触发了代码模式,直接给出正确答案“3”。
腾讯元宝像解数学题一样列方程给出了正确答案(虽然貌似没有必要)。
文心一言4.0收费版则更加详细,也是先正确理解了意图,然后掰指头挨个找出了全部的“r”。
不过有意思的是,在同一种方法下,文心一言APP中的免费版文心3.5掰指头也能数错。
讯飞星火也通过找出“r”所在位置给出了正确回答。
‘
虽然“数r”和“9.11与9.9哪个大”,看似一个是数字问题一个是字母问题,但对于大模型来说,都是token问题。
单个字符对大模型来说意义有限,使用GPT系列的Llama系列的tokenizer就会发现,20个字符的问题,在不同AI眼中是10-13个token。
其中相同之处在于,strawberry被拆成了st-,raw,-berry三个部分来理解。’
换一个思路用特殊字符ⓢⓣⓡⓐⓦⓑⓔⓡⓡⓨ来提问,每一个字符对应的token也就会分开了。
面对这种问题,其实最简单的方法就是像智谱清言一样,调用代码来解决了。
可以看到,ChatGPT直接用Python语言字符串的count函数,就能简单搞定。
刚刚创业开了所学校的大神卡帕西认为,关键在于需要让AI知道自己能力的边界,才能主动去调用工具。
至于教给大模型判断自己知道不知道的方法,Meta在LLama 3.1论文中也有所涉及。
最后正如网友所说,希望OpenAI等大模型公司,都能在下个版本中解决这个问题。
文章来源于“量子位”,作者“关注前沿科技”
【开源免费】ai-comic-factory是一个利用AI生成漫画的创作工具。该项目通过大语言模型和扩散模型的组合使用,可以让没有任何绘画基础的用户完成属于自己的漫画创作。
项目地址:https://github.com/jbilcke-hf/ai-comic-factory?tab=readme-ov-file
在线使用:https://aicomicfactory.app/
【开源免费】DeepBI是一款AI原生的数据分析平台。DeepBI充分利用大语言模型的能力来探索、查询、可视化和共享来自任何数据源的数据。用户可以使用DeepBI洞察数据并做出数据驱动的决策。
项目地址:https://github.com/DeepInsight-AI/DeepBI?tab=readme-ov-file
本地安装:https://www.deepbi.com/
【开源免费】airda(Air Data Agent)是面向数据分析的AI智能体,能够理解数据开发和数据分析需求、根据用户需要让数据可视化。
项目地址:https://github.com/hitsz-ids/airda
【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。
项目地址:https://github.com/labring/FastGPT
【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。
项目地址:https://github.com/microsoft/graphrag
【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。
项目地址:https://github.com/langgenius/dify
【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。
项目地址:https://github.com/infiniflow/ragflow/tree/main
【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目
项目地址:https://github.com/phidatahq/phidata
【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。
项目地址:https://github.com/TaskingAI/TaskingAI
【免费】ffa.chat是一个完全免费的GPT-4o镜像站点,无需魔法付费,即可无限制使用GPT-4o等多个海外模型产品。
在线使用:https://ffa.chat/
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0
【开源免费】VideoChat是一个开源数字人实时对话,该项目支持支持语音输入和实时对话,数字人形象可自定义等功能,首次对话延迟低至3s。
项目地址:https://github.com/Henry-23/VideoChat
在线体验:https://www.modelscope.cn/studios/AI-ModelScope/video_chat
【开源免费】Streamer-Sales 销冠是一个AI直播卖货大模型。该模型具备AI生成直播文案,生成数字人形象进行直播,并通过RAG技术对现有数据进行寻找后实时回答用户问题等AI直播卖货的所有功能。
项目地址:https://github.com/PeterH0323/Streamer-Sales