ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
老黄不止卖铲子了:英伟达配合Llama3.1推出定制模型、推理服务
7130点击    2024-07-27 19:59

芯片巨头英伟达,在AI时代一直被类比为在淘金热中“卖铲子”的背后赢家。



现在他不装了,也要亲自下场“挖金矿”


配合最强开源大模型Llama3.1,推出NVIDIA AI Foundry和NVIDIA NIM推理微服务两大新业务。


Foundry在芯片行业指“铸造厂”,比如台积电制造其他公司设计的芯片。


NVIDIA AI Foundry,代表英伟达可以定制化制造大模型了:


NVIDIA AI Foundry 提供从数据策管、合成数据生成、微调、检索、防护到评估的全方位生成式AI模型服务。


NVIDIA NIM在年初的GTC大会上首次亮相,使用几行代码就可以在云、数据中心、工作站和PC上部署AI模型。


现在则又新加一个标签:将Llama 3.1模型部署到生产中的最快途径,吞吐量最多可比不使用NIM运行推理时高出2.5倍



为什么在这个时间点出手?


黄仁勋表示:“Meta的Llama 3.1开源模型标志着全球企业采用生成式 AI 的关键时刻已经到来”


企业可以将Llama 3.1 NIM 微服务与与全新NVIDIA NeMo Retriever NIM微服务组合使用,为AI copilot、助手和数字人虚拟形象搭建先进的检索工作流。


NVIDIA和Meta还一起为Llama 3.1提供了一种提炼方法,供开发者为生成式AI应用创建更小的自定义Llama 3.1模型。这使企业能够在更多加速基础设施(如 AI 工作站和笔记本电脑)上运行由Llama驱动的AI应用。


之前老黄与小扎见面,交换皮衣穿,原来是商量这些合作去了(手动狗头)。



自定义模型+加速部署全流程服务


Llama 3.1系列模型发布还没几天,手快的企业已经用在生产中了。


Aramco、AT&T和优步,成为首批使用面向Llama 3.1全新NVIDIA NIM微服务的公司。


咨询巨头埃森哲更进一步,借助NVIDIA AI Foundry为自己以及咨询客户创建自定义Llama 3.1 模型,


从自定义模型到加速部署,被英伟达打造进了同一套流程。



企业自有数据,可使用NeMo Curator开源Python库完成快速且可扩展的数据集准备和大模型用例的管理,包括基础模型预训练、领域自适应预训练 (DAPT)、监督微调 (SFT) 和参数高效微调 (PEFT)。


接下来使用NeMo Customizer简化大模型的微调和对齐。最初支持两种流行的参数高效微调技术:LoRA和P-Tuning。未来还将添加对完全对齐技术的支持,包括监督式微调(SFT)、从人类反馈中进行强化学习(RLHF)、直接偏好优化(DPO)以及NVIDIA SteerLM等。


Nemo Evaluator支持多种学术基准的自动评估,能够对自定义数据集进行评估,同时也支持支持使用大模型作为评委(LLM-as-a-Judge)对模型响应进行自动评估。


NeMo Guardrails使开发者能够构建三种边界:


  • 主题护栏防止应用偏离进非目标领域,例如防止客服助理回答关于天气的问题。


  • 功能安全护栏确保应用能够以准确、恰当的信息作出回复。它们能过滤掉不希望使用的语言,并强制要求模型只引用可靠的来源。


  • 信息安全护栏限制应用只与已确认安全的外部第三方应用建立连接。


在创建了自定义模型后,企业就可以构建NVIDIA NIM推理微服务,在其首选的云平台,使用自己选择的最佳机器学习运维(MLOps)和人工智能运维(AIOps)平台在生产中运行这些模型。


合成数据趋势爆发


像Llama 3.1 405B和和英伟达Nemotron-4 340B这样超过千亿参数的大模型,用在绝大多数场景在成本和速度上都不会令人满意。


英伟达和Meta都意识到,用于生产合成数据,将是他们发挥作用的最大场景。


英伟达Nemotron-4 340B系列包括基础、指导和奖励模型,这些模型形成一个管道,用于生成用于训练和优化LLMs的合成数据,并且使用了独特宽松的开放模型许可证,为开发人员提供了一种免费、可扩展的方式来生成合成数据


Llama 3.1更新的开源协议这次也特别声明:允许使用Llama生产的数据去改进其他模型,只不过用了之后模型名称开头必须加上Llama字样。



参考链接:


[1]https://nvidianews.nvidia.com/news/nvidia-ai-foundry-custom-llama-generative-models


[2]https://blogs.nvidia.com/blog/nemotron-4-synthetic-data-generation-llm-training/


文章来源于:微信公众号量子位


关键词: Llama3.1 , AI , AI硬件 , AI芯片 , 算力
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
数字人

【开源免费】Fay开源数字人框架是一个AI数字人项目,该项目可以帮你实现“线上线下的数字人销售员”,

“一个人机交互的数字人助理”或者是一个一个可以自主决策、主动联系管理员的智能体数字人。

项目地址:https://github.com/xszyou/Fay

3
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

4
无人直播

【开源免费】VideoChat是一个开源数字人实时对话,该项目支持支持语音输入和实时对话,数字人形象可自定义等功能,首次对话延迟低至3s。

项目地址:https://github.com/Henry-23/VideoChat

在线体验:https://www.modelscope.cn/studios/AI-ModelScope/video_chat


【开源免费】Streamer-Sales 销冠是一个AI直播卖货大模型。该模型具备AI生成直播文案,生成数字人形象进行直播,并通过RAG技术对现有数据进行寻找后实时回答用户问题等AI直播卖货的所有功能。

项目地址:https://github.com/PeterH0323/Streamer-Sales