ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
最新调查:AI大模型的两大难题,要靠“绿色计算”来解决?
3584点击    2023-11-04 22:21

当前,人工智能(AI)已广泛应用于众多领域,包括计算机视觉、自然语言处理、时间序列分析和语音合成等。

 

在深度学习时代,尤其是随着大型语言模型(LLMs)的出现,大多数研究人员的注意力都集中在追求新的最先进(SOTA)结果上,使得模型规模和计算复杂性不断增加。

 

对高计算能力的需求带来了更高的碳排放,也阻碍了资金有限的中小型公司和研究机构的参与,从而破坏了研究的公平性。

 

为了应对 AI 在计算资源和环境影响方面的挑战,绿色计算(Green Computing)已成为一个热门研究课题。

 

近日,蚂蚁集团携手国内众多高校和研究机构共同发布一项调查报告,系统地概述了绿色计算所使用的技术,并提出了一个绿色计算框架,其中包括以下四个关键组成部分:

 

  • 绿色衡量指标(Measures of Greenness):衡量智能系统所需计算资源的关键因素和方法。常见的测量指标包括直接指标,如运行时间、电力消耗和模型大小,也包括间接指标,如碳排放。

  • 节能 AI(Energy-Efficient AI):优化 AI 模型整个生命周期的节能方法,包括模型设计、训练、推理,还包括针对大型语言模型的优化技术,从而减少训练和推理的功耗。

  • 节能计算系统(Energy-Efficient Computing Systems):优化计算系统资源消耗的技术,包括集群资源调度、分区和数据管理优化。

  • 可持续性 AI 应用(AI for Sustainability):采用 AI 来提高可持续性的应用,包括用于环境效益(用于环境的绿色计算)和提高工程效率(用于工程的绿色计算)的应用。环境绿色计算包括利用卫星成像 CV 监测空气污染排放和碳封存估计等应用,工程绿色计算包括优化数据库安全加密等。



该研究指出,“这一新的研究方向有可能解决资源限制和 AI 发展之间的冲突。”

 

相关研究论文以“On the Opportunities of Green Computing: A Survey”为题,已发表在预印本网站 arXiv 上。


论文链接:https://arxiv.org/abs/2311.00447


从众多 AI 算法的训练和推理案例中,模型大小、参数调优和训练数据成为影响计算资源的三大主要因素。在这基础上,该研究总结了六种常见的“环保性”测量方法,包括运行时间、模型大小、FPO/FLOPS(浮点运算操作数)、硬件功耗、能源消耗以及碳排放。


用于跟踪“环保性”测量的工具包括 tfprof、绿色算法、CodeCarbon、Carbontracker 以及自动 AI 模型环保性跟踪工具包。


在图像分类、目标检测和其他 AI 任务中,一些传统的深度学习神经网络模型,如 LeNet、VGG、GoogleNet 等,虽然取得了不错的性能,但却需要过多的计算资源。因此,该研究提出使用 Depth-wise Separable Convolution、Fire Convolution、Flattened Convolution 以及Shrinked Convolution 等方法来解决这一问题。


此外,在开发基于图数据的神经网络方面,该研究还提出了 ImprovedGCN,其中包含 GCN 的主要必要组成部分。另外,该研究还推荐了另外一种神经网络——SeHGNN,用于汇总预先计算的邻近表示,降低了复杂性,避免了在每个训练周期中重复聚合邻近顶点的冗余操作。


在时间序列分类方面,目前常用的集成学习方法需要大量计算资源。为此,研究建议使用LightTS 和 LightCTS 两种方法来解决这个问题。


另外,Transformer 是一个强大的序列模型,但随着序列长度的增加,其需要的时间和内存呈指数级增长。自注意力(Self-Attention)类型的网络在处理长序列时需要大量内存和计算资源。为此,研究建议使用 Effective Attention 以及 EdgeBERT 和 R2D2 两种模型来应对这一挑战。


除了特定神经网络组件的设计,还有一些通用策略可以用于高效的神经网络结构设计,例如低秩模块策略、静态参数共享、动态网络和超级网络等策略。这些策略可以无缝地集成到任何参数化结构中。


在模型训练方面,研究总结了有效训练范式、训练数据效率以及超参数优化三个方面的方法。为了实现绿色 AI,降低神经网络的能源消耗,可以采用模型剪枝、低秩分解、量化和蒸馏等有效方法。


在节能计算系统方面,研究简要介绍了包括优化云数据库资源利用、硬件和软件协同设计等多方面的解决方案,这些原则也同样适用于数据分析领域,包括利用混合查询优化和机器学习等技术,以提高处理过程的能源效率。


值得注意的是,绿色计算强调的是 AI 不仅在其自身的开发和运行中应具备能源效率,还应积极参与各种绿色应用领域,以解决环境和可持续性挑战。


研究指出,AI 能够有效地从监测数据、遥感数据和气象数据中提取有用信息,其中涵盖了空气污染监测、碳封存估算、碳价格预测等众多领域,从而为决策和行动提供指导。


目前,尽管绿色计算已经在能源效率和碳减排方面取得成功,但计算资源仍然成为产业增长的瓶颈。为此,该研究提出了一些未来研究方向,包括在模型评估中加入“绿色度”测量,制定广泛接受的绿色度评估框架,探索更小但更高效的语言模型,以及鼓励更多工业应用以降低对环境的影响。


另外,研究指出,绿色计算的未来将依赖于学术界、产业界和政府的共同努力,以实现环境可持续性和 AI 效率的平衡发展。政策支持、创新合作和最佳实践分享将是推动这一领域进一步发展的关键。



文章来自微信公众号 “学术头条”,作者 闫一米



关键词: AI大模型 , LLMs , AI