ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
除了烧钱,互联网留给大模型挥霍的“家底”不多了
6944点击    2024-08-12 11:54

互联网或许从未停止创新,只是对于创新的认知下降了


在新一轮互联网创新历程中,大模型有幸成了下一个赛点,这次不再像之前的元宇宙一样稍纵即逝,而是真的在逐渐往应用层面渗透。


《2024年中国移动互联网半年报告》发布,报告显示,2024年6月,AIGC类APP的月活跃用户规模达6170万,同比增长653%。从去年开始,大模型就再次掀起互联网混战,全球科技大厂生怕错过一次


重要的时代转折,无论是做游戏的、电商的、还是社交玩家,都在倾尽全力跟进大模型时代。


有机构曾预测过,未来到2025年,全球 AI 市场规模将超过6万亿美元,2017年-2025年复合增长率达30%。


诚然,互联网世界已经安静了许多年,赖以大模型,总算又热闹了一回。淘宝、支付宝、抖音等国内流量规模前20的超级APP,基本都在发力内嵌式AI应用,智能助理、智能搜索、智能导购……各类新


玩法层出不穷。


在全球互联网领域失去创新能力之后,大模型真的能给予互联网新的生命力吗?这个问题值得认真思考。


创新认知正在降级,产品研发故步自封


在大模型出现之前,互联网巨头为什么迟迟没有孵化出新的创新产品?


实际上,全球科技企业都在被这个问题残忍逼问。去年1月份,英国杂志《自然》刊登了一篇论文,文中基于4500万份手稿与390万项专利发现,全球范围内的颠覆性技术都在下降。


从企业角度来看,这些年来,互联网市场从未停止过研发进度,甚至还在不断加强。只不过,大厂的研发似乎都失去了意义,长远的投入与回收不成正比,严重消耗了资本的创新热情。


这不是空穴来风。根据上海证券交易所报告,仅在2021年,国内以寒武纪为代表的一众科创板块企业的投入研发成本就高达167亿,可惜,累计亏损远远超过了这个数。统计局数据显示,从2000年到


2019年,企业的投入已经超出国内研发总投入的76%,年增速度达到10%。


即便是在这几年外部环境不利好的情况下,国内企业的研发增速依旧能保持在18%以上。但研发难以增收也是不争的事实,此前,百度的李彦宏公开表示,百度研发工程师超过万人,投入一度是收入的


20%,但换来的实际业绩却不理想。


如此一来,巨头公司宁愿去投资现有项目,以腾讯为例,数据显示,腾讯目前总投资企业超过800家,其中有160家为估值超过10亿美金的独角兽企业。为此,外界甚至曾流传过一种说法,巨头的投资


与干预使行业内部的创新力被压缩了。


除此之外,研发换不来可观的回收,也让大厂不再一味盲目开发新产品。


这些年,小程序成品的涌现频率要高出独立APP许多,此前,阿里、腾讯、字节、百度、快手、美团、京东……陆续开发小程序,而独立APP为了节约试错成本大面积关停。统计显示,腾讯曾一年关掉


了40多个项目,字节也下架了派对岛,截止目前为止,仅互联网大厂这几年关停的独立产品就高达70多款。


而这背后与整个互联网行业的盈利状态息息相关,工信部数据显示,今年第一季度,我国规模以上互联网企业营业成本同比增长5.1%,实现利润总额278.9亿元,但同比下降15.3%,利润总额增速由正


转负。


大模型的出现,算是一缕照进互联网世界的曙光,苦于固步自封的大厂们一涌而上,从研发方向也能看出,大模型的确激发了巨头们的研发信心。然而,大模型所带来的创新能维持多久?


有一点需要注意,时至今日,创新疲软的互联网领域很难再出现一个现象级产品,或者领头式技术。毕竟走过微信、抖音年代,任何一点风吹草动都能引发行业内卷,正如当下,自研芯片、大数据、云


计算、人工智能等技术成了所有巨头,乃至科技创业的重头戏。


同质化的戏码,从未在互联网界消失,当AI玩法在任何一个APP上都能见到,这样的创新也就不再是“创新”。


另外,虽然大模型热多少激起了一些水花,但互联网巨头曾经最担心的研发与营收不成正比的问题更为严重了。全球科技发力AI,所造就的资本支出也就越来越多。这段时间,海外巨头的财报把大模型


烧钱的本质展现得淋漓尽致。


有机构分析,到了2025年和2026年,大模型训练成本会接近50-100亿美元,其中,Meta、谷歌、微软可能计划将大模型研发成本提高到500亿美元。


种种迹象显示,互联网或许从未停止创新,只是对于创新的认知下降了。


大模型应用的威力,并没预想中的强


不同于过去的几次革新,这一次互联网集体向用户提供的大模型应用,面世没多久就遇到了一些麻烦:用户需要大模型的几率大吗?就目前一系列数据来看,答案或许是比预期的要悲观一些。


红杉资本数据显示,即便是全球大模型的头部ChatGPT,其首月用户留存率也只有56%,有大约一半的用户用不到一个月就将其“搁置”了。同样的,《2024年中国移动互联网半年报告》也显示,国内


AIGC用户不稳定,AIGC行业人均使用时长同比下滑了23.5%。


说到底,人工智能渗入现实生活还只是资本的“幻想”。


从用户层面来看,几乎所有主流APP上的AIGC应用的用户留存率低于传统应用,参与度也较低。7月份,贝壳财经发布了一项调查,52.05%的受访者在工作中有时使用大模型,23.97%很少使用,经常


使用的受访者占20.55%,总是使用的人仅占2.05%。



从企业层面来看,华为有一组预测数据,到2026年,人工智能对企业的渗透率也只能达到20%。


为什么会出现这种情况?技术、成本、实用性、安全性其实都是原因。


以AI落地应用最广泛的文娱行业为例,前段时间,成龙新片《传说》上映,在该片上映之前,AI技术一直是影片宣传的最大噱头。据悉,博纳影业在电影里用AI还原了27岁的成龙,但买账的观众却寥寥

无几。


数据显示,当前《传说》豆瓣评分5.4分,上映十几天也只有7000多万的票房。


在另外一大应用领域“广告界”的使用口碑也褒贬不一。艾瑞咨询显示,已有约半数广告主企业在线上营销活动中应用AIGC技术,其中超9成用于内容及创意场景,当前大部分互联网在自身产品里引入大


模型,也是为了拉动每况愈下的广告收入。


然而,AIGC短板也开始浮出水面:例如生产素材过于公式化、AI效果令用户审美疲劳、以及众所周知的AI抄袭问题……之前,“我用 AI 五分钟生成一个广告 ,却花了五个小时去 AI 味”的文章在社交平


台上产生热议。


如果大模型无法像社交通讯、短视频娱乐那样,在用户的网络生活中产生刚需效应,那大模型之于互联网进程,也就没太大的推进作用。当前,互联网领域最大的重心就是要提升AI落地的应用效率。


而资本也意识到了这一点,投资流向正从研发赛道流向应用赛道。海通国际研报称,2024年有望成为国产大模型全面商业落地的元年。


数据显示,在今年近120起全球大模型投资事件里,大模型应用企业占69%,占比超过一半,而AI Infra、通用大模型分别只占16%、11%,大模型数据服务甚至只剩下了3%。细看大模型应用领域,AI


医疗健康、视觉/视频生成领域、办公助手和编程助手获得融资的企业最为密集,分别占比为15%、15%、13%、11%。


总而言之,资本正在现实世界中加速普及大模型,技术和业务需求如何匹配是大模型企业迫在眉睫的问题。也只有这样,互联网才有被“拯救”的可能,反之,失去创新力的互联网还要继续迷茫。


互联网留给大模型吃老本的“家底”不多了


有一个问题需要注意,互联网走到大模型阶段,大多数的玩法还与从前一样,要么持续打价格战,要么回身吃本身的流量“老本”。


从本质上讲,大模型的落地与古早互联网时期“圈地跑马”没什么区别。


今年5月份,国内一众大模型玩家开始官宣降价,阿里的通义千问主力大模型Qwen-Long的API价格直降97%后,文心大模型两大主力模型ERNIE Speed和ERNIE Lite全面免费,随后,科大讯飞也宣


布,讯飞星火API能力免费开放。


而字节跳动这边,豆包从发布到冲上第一只用了30天的时间,据悉,豆包之所以能短时间内成为大模型“顶流”,不仅因为月活7.94亿人的抖音为其助力,新一轮的烧钱金额也达到了1.24亿元。


遥想当年,国内互联网大厂最屡试不爽的招数就是砸钱。时至今日,“圈地”的打法还适用吗?


首先,大模型在当前只能砸钱换流量的关键在于技术趋同,最终影响用户留存的也会是回归于技术,单纯降低应用成本从短期角度来看的确能增加曝光、争抢用户,但长久来看,AI技术服务不是外卖、


更不是短视频,依靠烧钱无法带来良好的使用体验。


其次,大模型发展本身就是个成本巨大的资金型工程,或许对于现金流富裕的大厂而言,价格战打得起,但当前大模型盈利遥遥无期,小型企业入局的风险不可小觑,这必然会进一步降低整个行业的创


新力和创造力。


事实上,大模型价格战是从海外先开始的,彼时,OpenAI和谷歌最先宣布降价。但在海外,云厂商正在脱离传统服务模式,转用其他方式来填空这一成本,以英伟达为例,5月份,英伟达公布了2025


财年的第一季度数据。


英伟达方面表示,在英伟达CUDA上训练和推理AI可以推动云租赁收入的增长,每1美元的英伟达AI基础设施支出让云服务提供商有机会在四年里获得5美元的GPU即时托管收入。国内能否快速跟进这一


步计划,其实还有待商榷。


当然,除了能够继续“传承”的打法,互联网这些年给大模型留下的“家底”也不多了,即便是从全球范围内来看,资金之外,大模型最需要的信息数据已出现短缺。


Similarweb的数据显示,自2023年5月ChatGPT全球访问量达到18亿次的巅峰后,其流量增长开始逐渐放缓。对此,OpenAI决定放宽对ChatGPT的限制,用户一度无需注册就能使用。


没办法,这也是当前大模型发展的困境之一:现有的互联网信息量难以支撑如此之多大模型训练。


这段时间,字节跟一众在线办公企业“喂养”大模型的事引发不少用户不满。公开资料显示,GPT-4训练涉及的数据量高达12万亿tokens,未来像GPT-5,可能需要60万亿到100万亿tokens。


根据Epoch研究所预测,到2024年年中,大模型对高质量数据的需求超过供给的可能性为50%,到2026年发生这种情况的可能性为90%,而这种数据短缺风险将延迟至2028年。


至于如何弥补这一巨大的数据缺口,渗透率逐渐触到天花板的互联网,一时间也找不到更好的办法。


本文来自微信公众号“道总有理”(ID:daotmt),作者:道总



关键词: 大模型 , AI , AIGC , 人工智能