家人们,最近o1的热度这么高,大家有开始使用嘛!
作为OpenAI全新推出的推理模型,o1与GPT系列的主要区别在于,它是首个高度专注于推理的模型,用有更深入的思考能力。
昨天晚上,OpenAI 放出来了如何使用o1的提示词官方教程!大家快Mark起来,为高效使用o1做准备吧!
官方链接:https://platform.openai.com/docs/guides/reasoning/advice-on-prompting?reasoning-prompt-examples=research
不同于GPT的“逐步思考”提示词,o1更适合使用简单、直接的提示词。这是因为在处理提示词时,o1的内部机制与GPT存在差异。
总之,o1的提示词,简单才是王道!
o1相较于GPT有能够实现更复杂、完整的算法代码的能力,官方为了让大家能够更好得使用o1生成完成度更高的代码,提供了一些代码生成的API调用的模版样例:
特定条件提示词:
from openai import OpenAI
client = OpenAI()
prompt = """
Instructions:
- Given the React component below, change it so that nonfiction books have red
text.
- Return only the code in your reply
- Do not include any additional formatting, such as markdown code blocks
- For formatting, use four space tabs, and do not allow any lines of code to
exceed 80 columns
const books = [
{ title: 'Dune', category: 'fiction', id: 1 },
{ title: 'Frankenstein', category: 'fiction', id: 2 },
{ title: 'Moneyball', category: 'nonfiction', id: 3 },
];
export default function BookList() {
const listItems = books.map(book =>
<li>
{book.title}
</li>
);
return (
<ul>{listItems}</ul>
);
}
"""
response = client.chat.completions.create(
model="o1-mini",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
],
}
]
)
print(response.choices[0].message.content)
提示词:
from openai import OpenAI
client = OpenAI()
prompt = """
I want to build a Python app that takes user questions and looks them up in a
database where they are mapped to answers. If there is close match, it retrieves
the matched answer. If there isn't, it asks the user to provide an answer and
stores the question/answer pair in the database. Make a plan for the directory
structure you'll need, then return each file in full. Only supply your reasoning
at the beginning and end, not throughout the code.
"""
response = client.chat.completions.create(
model="o1-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
],
}
]
)
print(response.choices[0].message.content)
就在两天前,OpenAI科学家、o1核心贡献者Hyung Won Chung在麻省理工进行了公开演讲,演讲主题为“Don’t teach. Incentivize(不要教,要激励),演讲中的一些内容灰常有意思!奶茶带大家来一起看下~
研究团队谈到,当他们认识到自己想做一个具备推理能力的模型,首先想到的就是人类记录其思维推演的过程,所以,他们在这样的动机下,开始设计、训练模型。
在早期o1模型上的实验验证,研究团队发现,在考验模型推理能力的最主要测试-数学中,o1已经开始显露大幅提升了效果!而且最令研究团队最激动人心的发现是--模型终于开始自我反思、质疑自己!研究团队认识到,这是不一样的东西!
在过去,AGI的概念似乎是抽象的、遥不可及的,但是当亲眼见证大语言模型AI能够在过去人类做的好的事情上做的更好,研究团队们开始相信AGI是总有一天会到来的!
研究团队提出训练AI同样要“授人以鱼不如授人以渔”,要让AI知道鱼的美味,但是让他保持饥饿,只有这样AI才会主动去学习如何钓鱼。通过激励而非直接指导的方式,对人类来说可能需要更多时间,但对于深度学习系统,通过增加计算资源,可以在较短时间内完成同等训练。
机器不受人类时间限制的约束,因此在特定领域上是有可能超越人类专家的水平。这就像动漫《龙珠》中的"精神与时间之屋",在里面训练一年的时间,外界仅过去一天,时间流速比率高达365倍。对于深度学习系统,通过高效计算和大量数据叠加,这个时间压缩比率可以更高!
在GPT的训练中,OpenAI的研究团队就已经开始采用了弱激励学习(Weak Incentive Learning)。与其直接向模型灌输某种技能,更有效的方法是通过提供弱激励,使模型在面对众多任务时能够自主地发展出解决问题的通用能力。
例如:训练模型预测下一个词,模型不仅学会了语言的结构,还学会了如何在缺乏明确指示的情况下推导出复杂的答案。
随着模型规模的不断增加,研究团队观察到o1类推理模型以及其他大语言模型在处理问题时都开始逐渐展现一些“新能力”。
这些能力并不是事先设定的,而是在模型训练过程中通过自我学习逐渐显现的。
例如,即使在未经特别训练推理或数学技能的情况下,模型意外地展示出高级的推理和数学解题能力。随着模型规模的增长,这种涌现的能力会自然出现,特别是当模型面对多样化的任务时。
文章来源“夕小瑶科技说”,作者“付奶茶”
【开源免费】smart-excel-ai是一个输入你想要的Excel公式的描述,即可帮你生成对应公式的AI项目
项目地址:https://github.com/weijunext/smart-excel-ai
在线使用:https://www.smartexcel.cc/(付费)
【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。
项目地址:https://github.com/microsoft/graphrag
【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。
项目地址:https://github.com/langgenius/dify
【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。
项目地址:https://github.com/infiniflow/ragflow/tree/main
【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目
项目地址:https://github.com/phidatahq/phidata
【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。
项目地址:https://github.com/TaskingAI/TaskingAI
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0