本文第一作者柳斐(https://feiliu36.github.io/ )是香港城市大学计算机科学系博士生,师从张青富教授。研究领域为计算智能,自动算法设计,组合优化等。姚一鸣,郭平,杨致远,赵哲和林熙来自香港城市大学张青富教授团队。陆智超为香港城市大学计算机科学系助理教授。王振坤为南方科技大学系统设计与智能制造学院助理教授。童夏良和袁明轩来自华为诺亚方舟实验室。
算法设计(AD)对于各个领域的问题求解至关重要。大语言模型(LLMs)的出现显著增强了算法设计的自动化和创新,提供了新的视角和有效的解决方案。在过去的三年里,LLMs 被整合到 AD(LLM4AD)中取得了显著进展,在优化、机器学习、数学推理和科学发现等各个领域获得广泛研究和应用。鉴于这一领域的快速发展和广泛应用,进行系统性的回顾和总结既及时又必要。本文对 LLM4AD 的研究进行了系统性回顾。首先,我们概述和总结了现有研究。然后,我们沿着四个维度,包括 LLMs 的作用、搜索技术、提示策略和应用,提出了一个系统性分类和现有研究的回顾,讨论了使用 LLMs 的潜力和成就。最后,我们探讨当前的挑战,并提出了几个未解问题和未来研究的方向。
算法在解决各个领域的问题中发挥着至关重要的作用,包括工业、经济、医疗和工程等领域。传统的手工设计算法的方法繁琐且耗时,需要广泛的专业知识和大量的努力。因此,人们越来越关注在算法设计中采用机器学习和计算智能技术以自动化和增强算法开发过程。
近年来,大型语言模型(LLMs)已经成为生成人工智能领域的重大突破。LLMs 以其庞大的模型规模、巨大的训练数据和在语言理解、数学推理、代码生成等各个研究领域中有着出色的表现。在过去的三年里,大型语言模型用于算法设计(LLM4AD)已经成为一个新兴的研究领域,有望增强甚至重塑算法的构思、优化和实施方式。LLMs 的强大功能和适应性展示了其在改进和转变算法设计过程中的潜力,包括启发式生成、代码优化,甚至创造针对特定问题的新算法。这种方法不仅减少了设计阶段所需的人力,还提高了算法设计过程的创新性和效率。
尽管 LLM4AD 领域正在受到广泛研究和应用,但在这一新兴领域仍然缺乏系统性综述。本文旨在通过提供一个最新的多维度的系统综述来填补这一空白,全面展示 LLMs 在算法设计中的应用现状、主要挑战和未来研究方向。本文有助于深入探讨 LLMs 在增强算法设计方面的潜力,并为这一令人兴奋的领域的未来创新打下坚实基础。我们希望这将成为对该领域感兴趣的研究人员的有益资源,并为经验丰富的研究者提供一个系统性的综述。本文的贡献如下:
本文旨在对新兴领域 “大语言模型用于算法设计”(LLM4AD)中现有研究工作进行系统的梳理和分类。我们并不打算涵盖所有关于大型语言模型(LLMs)和算法的文献。我们的调查范围如下所述:1)“大语言模型” 一词指的是规模足够大的语言模型。这些模型通常采用 Transformer 架构,并以自回归方式运行。使用较小模型进行算法设计的研究,如传统的基于模型和机器学习辅助的算法,不在考虑范围内。虽然精确定义 “大型” 模型具有挑战性,但大多数前沿的大型语言模型包含超过十亿个参数。使用其他大型模型缺乏语言处理能力的研究,如纯视觉模型,不在考虑范围内。然而,包括语言处理的多模态大型语言模型则在我们的调查范围之内。2)“算法” 一词指的是一组设计用来解决问题的数学指令或规则,特别是当由计算机执行时。这个广泛的定义包括传统的数学算法、大多数启发式方法,以及可以被解释为算法的某些策略。
我们介绍了论文收集和扫描的详细流程,包括四个阶段:
图中展示了随时间变化的论文发表数量趋势,时间线以月份表示。图表显示,与 LLM4AD 相关的研究活动显著增加,特别是注意到大多数研究是在近一年进行的。这表明 LLM4AD 是一个新兴领域,随着来自不同领域的学者意识到其巨大潜力,我们预计在不久的将来研究产出将显著增加。
图中还显示了在 LLM4AD 出版物中领先的机构及其所在国家。美国领先,紧随其后的是中国,这两个国家单独占据了 50%的出版物。接下来的八个国家,包括新加坡、加拿大和日本,共同贡献了总出版物的三分之一。发表最多论文的研究机构包括清华大学、南洋理工大学和多伦多大学等知名大学,以及华为、微软和谷歌等大型公司。这种分布强调了研究主题的广泛兴趣和它们在现实世界中的实际应用的重大相关性。
我们从所有审查过的论文的标题和摘要中生成了词云,每个词至少出现五次。它展示了前 80 个关键词,这些词被组织成四个颜色编码的簇,分别是 “语言”、“GPT”、“搜索和优化” 以及 “科学发现”。还突出显示了几个关键词,如 “进化”、“策略”、“优化器” 和 “代理”。
LLM4AD 论文按照大模型的结合方法可以分为四个范式:1)大模型作为优化算子(LLMaO)、2)大模型用于结果预测(LLMaP)、3)大模型用以特征提取(LLMaE)、4)大模型用来算法设计(LLMaD)。
目前的经验表明,单独采用大模型来进行算法设计往往难以应对特定的复杂算法设计任务。通过搜索方法的框架下调用大模型能够显著提升算法设计效率和效果。我们综述了目前在 LLM4AD 中采用的搜索方法,并将其大致分为四类:1)基于采样的方法,2)单点迭代的搜索方法,3)基于种群的搜索方法和 4)基于不确定性的搜索方法。详细的介绍和讨论可以在原文中查看。
图中展示了文献中使用的领域或预训练语言模型(LLMs)的百分比。其中,超过 80%的研究选择使用未经特定微调的预训练模型,大约 10%的研究在领域数据集上对预训练模型进行了微调,其中只有 4.4%的模型是在特定问题上从头开始训练的。图中还展示了最常使用的 LLMs。在 LLM4AD 的论文中,GPT-4 和 GPT-3.5 是使用最多的 LLMs,总共占了大约 50%。Llama-2 是最常用的开源 LLM。一旦我们拥有了预训练的 LLMs,提示工程对于有效整合 LLMs 到算法设计中非常重要。我们讨论了 LLM4AD 论文中使用的主要提示工程方法的应用情况,包括零样本、少样本、思维链、一致性和反思。
我们整理了四个主要的应用领域:1)优化,2)机器学习,3)科学发现,4)工业。其主要工作按照应用类别、方法、大模型结合范式、提示词策略和具体应用问题进行了分类罗列。具体介绍可以在全文中查看。
本文提供了一份最新的关于大语言模型在算法设计中应用(LLM4AD)的系统性综述。通过系统回顾这一新兴研究领域的主要贡献文献,本文不仅突出了 LLM 在算法设计中的当前状态和发展,还引入了一个全新的多维分类体系,分类了 LLM 的结合范式、搜索方法、提示词方法和应用场景。这一分类体系为学术界和工业界的研究人员提供了一个框架,帮助他们理解和使用 LLM 进行算法设计。我们还讨论了该领域当前面临的限制和挑战并提出和探讨未来研究方向来激发和指引后续研究。
展望未来, LLM 与算法设计的交叉具有革命性地改变算法设计和应用方式的巨大潜力。LLM 在算法设计过程中的应用有助于极大的提高自动化程度并可能促进产生更高效、更有效和更具创造性的算法,以更好解决各个领域的复杂问题。我们希望本文能够有助于理解这一潜力,并促进 LLM4AD 这一有前景的研究领域的发展。
文章来自于微信公众号“机器之心”
【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。
项目地址:https://github.com/InternLM/xtuner
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0