NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释
4239点击    2024-11-18 14:54

自我纠错(Self Correction)能力,传统上被视为人类特有的特征,正越来越多地在人工智能领域,尤其是大型语言模型(LLMs)中得到广泛应用,最近爆火的OpenAI o1模型[1]和Reflection 70B模型[2]都采取了自我纠正的方法。


传统的大语言模型,因为在输出答案的时候是逐个Token输出,当输出长度较长时,中间某些Token出错是必然发生。但即使LLM后来知道前面输出的Token错了,它也得用更多错误来“圆谎”,因为没有机制让它去修正前面的错误。


而OpenAI o1在“慢思考”也就是生成Hidden COT的过程中,通过分析OpenAI官网给出的Hidden COT例子可以发现,在解决字谜问题的思考过程中,o1首先发现了每两个连续的明文字母会映射到一个秘文字母,于是便尝试使用奇数字母来构建明文,但是经过验证发现并不合理(Not directly);接着又重新修正答案最终成功解出字谜。


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释

图1 OpenAI o1 官网示例(部分Hidden CoT)


Reflection 70B的关键技术也包括错误识别错误纠正。他们用到了一种名为 Reflection-Tuning(反思微调) 的技术,使得模型能够在最终确定回复之前,先检测自身推理的错误并纠正。在实际的执行过程中,这会用到一种名为思考标签(thinking tag)的机制。模型会在这个标签内部进行反思,直到它得到正确答案或认为自己得到了正确答案。


频频应用于大语言模型的自我纠错技术为何有效?为什么纠错过程可以让模型把原本答错的问题重新答对?


为了探究这一问题,北大王奕森团队与MIT合作,从理论上分析了大语言模型自我纠错能力背后的工作机理。


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释


  • 论文题目:A Theoretical Understanding of Self-Correction through In-context Alignment
  • 论文地址:https://openreview.net/pdf?id=OtvNLTWYww
  • 代码地址:https://github.com/yifeiwang77/Self-Correction


作者团队将自我纠错的过程抽象为对齐任务,从上下文学习(In-context learning)的角度对自我纠错进行了理论分析。值得一提的是,他们并没有使用线性注意力机制下的线性回归任务进行理论分析,而是使用真实世界LLM在用的softmax多头注意力机制的transformer结构,并利用Bradley-Terry 模型和 Plackett-Luce 模型(LLM对齐的实际选择,用于RLHF和DPO)设计对齐任务进行研究。受理论启发,他们提出了一种简单的自我纠错策略--上下文检查(Check as Context),并通过实验,在消除大语言模型中存在的潜在偏见以及防御越狱攻击中效果显著。


理论分析:自我纠错实际上是一种上下文对齐?


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释

图2 关于上下文对齐的验证实验,分别涉及TF和GD的比较(a)、不同奖励噪声p的影响(b)、模型深度的影响(c)、以及不同注意力机制的效果(d)、(e)、(f)。


作者也通过设置验证实验来检验其理论导出的种种结论,以及各个 transformer 结构模块对 LLM 执行上下文对齐能力的影响,作者发现了很多有趣的结论:


  • 通过观察比较LLM在执行上下文对齐时前向传播的损失与梯度下降的损失曲线,LLM执行上下文对齐时的前传行为与梯度下降损失曲线几乎相同。(图2(a))
  • 评价的质量直接影响自我纠错的质量(图2(b))。
  • 对多样本的排序需要更深的模型层数,在达到一定深度后(15层),增加更多的层数并不能带来更高的收益。(图2(c))
  • Softmax注意力机制对从评价中分析回答优劣排序至关重要,而linear注意力则做不到这一点。具体来说,softmax 注意力机制可以有效地选取最优回答  并为各样本生成加权平均所需的权重。(图2(d))
  • 多头注意力机制对token角色的区分很重要。具体而言,多头注意力机制可以将生成的回答与正样本拉近,与负样本拉远。实验表明,3个attention head是上下文对齐任务中最优选择。(图2(e))
  • FFN对于token角色的转变很重要。在经过一个MHSA层后,FFN可以将上一轮的正样本屏蔽掉,从而使次优样本变成下一轮迭代的最优样本。(图2(f))


自我纠错策略:上下文检查


作者使用上下文检查(Check as Context,CaC)作为LLM完成自我纠错的方法,在两个现实世界的对齐任务中探索了自我纠错:缓解社会偏见和防范越狱攻击。


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释

图3 BBQ数据集上使用CaC的示例。

具体而言,首先对模型请求问题获得回答初始回答,然后对该回答进行评估,得到奖励。之后将初始回答,评估送入上下文,并重新请求问题,得到改正后的回答。此过程可多次重复以迭代改进回答,最终以最后一轮的模型回答作为模型的最终输出。


消除LLM社会偏见


本文使用 BBQ(Bias Benchmark for QA)数据集,在 vicuna-7B 和 Llama2-7b-chat 模型上测试了 CaC 方法的效果。此外,还在 BBQ 上研究了模型大小、评估质量和纠错轮数对纠错效果的影响。主要结论如下:


  • 多数情况下,自我纠错后的正确率高于原正确率(图4)
  • 正确率提升与自我评估的准确率高度相关(图4(c): ),甚至呈线性关系(图5(a))。
  • 采用不同的评价方式效果依次提升:仅使用对/错评价 < 自然语言评价 < 包含 CoT 的对/错评价。这是因为 CoT 不仅能提高评价准确性,还能为模型提供额外的自然语言信息。(图5(b))
  • 更大的模型有更好的纠错能力(图5(c)(d))
  • 当评价的正确率足够高时,更多的纠错轮数可以带来更好的纠错效果。(图5(e))


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释


图4 CaC对于不同种类的偏见的修正


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释


图5 BBQ上关于模型大小、评估质量以及纠错轮数的消融实验


同时,在防御越狱攻击的实验中,CaC也是所有测试的防御手段中最低的。


更多文章细节,请参考原文:https://openreview.net/pdf?id=OtvNLTWYww


参考资料:


[1] https://openai.com/index/introducing-openai-o1-preview/


[2] https://reflection70b.com/


文章来自于微信公众号“机器之心”


NeurIPS 2024 | 自我纠错如何使OpenAI o1推理能力大大加强?北大、MIT团队给出理论解释

AITNT-国内领先的一站式人工智能新闻资讯网站
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI数据分析

【开源免费】DeepBI是一款AI原生的数据分析平台。DeepBI充分利用大语言模型的能力来探索、查询、可视化和共享来自任何数据源的数据。用户可以使用DeepBI洞察数据并做出数据驱动的决策。

项目地址:https://github.com/DeepInsight-AI/DeepBI?tab=readme-ov-file

本地安装:https://www.deepbi.com/

【开源免费airda(Air Data Agent)是面向数据分析的AI智能体,能够理解数据开发和数据分析需求、根据用户需要让数据可视化。

项目地址:https://github.com/hitsz-ids/airda

2
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner