
美国奥数题撕碎AI数学神话,顶级模型现场翻车!最高得分5%,DeepSeek唯一逆袭
美国奥数题撕碎AI数学神话,顶级模型现场翻车!最高得分5%,DeepSeek唯一逆袭在数学推理中,大语言模型存在根本性局限:在美国数学奥赛,顶级AI模型得分不足5%!来自ETH Zurich等机构的MathArena团队,一下子推翻了AI会做数学题这个神话。
在数学推理中,大语言模型存在根本性局限:在美国数学奥赛,顶级AI模型得分不足5%!来自ETH Zurich等机构的MathArena团队,一下子推翻了AI会做数学题这个神话。
随着传统的人工智能基准测试技术显得力不从心,AI 构建者正转向更具创意的方法来评估生成式 AI 模型的能力。
在当今迅速发展的人工智能时代,大语言模型(LLMs)在各种应用中发挥着至关重要的作用。然而,随着其应用的广泛化,模型的安全性问题也引起了广泛关注。
还有不到一周就2025年了,各大社交音娱平台相继自动弹出“年度报告”的搜索选项。身处AI元年,AI模型这份年终答卷,自然也少不了。
新的大语言模型(LLM)评估基准对于跟上大语言模型的快速发展至关重要。
Maitrix.org 是由 UC San Diego, John Hopkins University, CMU, MBZUAI 等学术机构学者组成的开源组织,致力于发展大语言模型 (LLM)、世界模型 (World Model)、智能体模型 (Agent Model) 的技术以构建 AI 驱动的现实。
微软发布了 Copilot,Apple 将 Apple Intelligence 接入了 OpenAI 以增强 Siri。
随着对现有互联网数据的预训练逐渐成熟,研究的探索空间正由预训练转向后期训练(Post-training),OpenAI o1 的发布正彰显了这一点。
在AI的世界里,模型的评估往往被看作是最后的「检查点」,但事实上,它应该是确保AI模型适合其目标的基础。
测试结果显示出想开发出能与人类计算机操作能力相仿的AI,还存在很大挑战。