按部就班 vs. 好奇心驱动,哪个更容易出研究成果?
按部就班 vs. 好奇心驱动,哪个更容易出研究成果?
一年一度CVPR最佳论文放榜了!刚刚结束开幕演讲上,公布了2篇最佳论文、2篇最佳学生论文、荣誉提名等奖项。值得一提的是,今年北大上交摘得最佳论文提名桂冠,上科大夺得最佳学生论文。
对于烟雾等动态三维物理现象的高效高质量采集重建是相关科学研究中的重要问题,在空气动力学设计验证,气象三维观测等领域有着广泛的应用前景。通过采集重建随时间变化的三维密场度序列,可以帮助科学家更好地理解与验证真实世界中的各类复杂物理现象。
万万没想到,与任务无直接关联的多模态数据也能提升Transformer模型性能。
想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发,影视制作,或者虚拟现实应用。来自阿尔伯塔大学的研究团队提出的新一代 Text2Motion 框架,MoMask,正在让这一切变得可能。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
指代分割 (Referring Image Segmentation,RIS) 是一项极具挑战性的多模态任务,要求算法能够同时理解精细的人类语言和视觉图像信息,并将图像中句子所指代的物体进行像素级别的分割。
图像融合的目的是将同一场景中不同传感器捕获的多源图像的互补信息整合到单个图像上。这种方式通常被用于提取图片重要信息和提高视觉质量。
来自香港科技大学,清华大学的研究者提出了「GenN2N」,一个统一的生成式 NeRF-to-NeRF 转换框架,适用于各种 NeRF 转换任务,例如文字驱动的 NeRF 编辑、着色、超分辨率、修复等,性能均表现极其出色!
自 2020 年神经辐射场 (Neural Radiance Field, NeRF) 提出以来,将隐式表达推上了一个新的高度。作为当前最前沿的技术之一