
1.2万人朝圣CVPR,华人学者夺最佳论文!Sora舵手火爆演讲成大型追星现场
1.2万人朝圣CVPR,华人学者夺最佳论文!Sora舵手火爆演讲成大型追星现场一年一度CVPR最佳论文放榜了!刚刚结束开幕演讲上,公布了2篇最佳论文、2篇最佳学生论文、荣誉提名等奖项。值得一提的是,今年北大上交摘得最佳论文提名桂冠,上科大夺得最佳学生论文。
一年一度CVPR最佳论文放榜了!刚刚结束开幕演讲上,公布了2篇最佳论文、2篇最佳学生论文、荣誉提名等奖项。值得一提的是,今年北大上交摘得最佳论文提名桂冠,上科大夺得最佳学生论文。
为了实现高精度的区域级多模态理解,本文提出了一种动态分辨率方案来模拟人类视觉认知系统。
拯救4bit扩散模型精度,仅需时间特征维护——以超低精度量化技术重塑图像内容生成!
SAX-NeRF框架,一种专为稀疏视角下X光三维重建设计的新型NeRF方法,通过Lineformer Transformer和MLG采样策略显著提升了新视角合成和CT重建的性能。研究者还建立了X3D数据集,并开源了代码和预训练模型,为X光三维重建领域的研究提供了宝贵的资源和工具。
本周,CVPR 2024正在美国西雅图拉开序幕。今年CVPR论文投稿数再次创下新纪录,可想而知本届会议的火热。
CVPR正在进行中,中国科研力量再次成为场内外焦点之一。
在CV、ML等领域经常用到的神经场网格模型,如今有了理论框架描述其训练动力学和泛化性能。
360 度场景生成是计算机视觉的重要任务,主流方法主要可分为两类,一类利用图像扩散模型分别生成 360 度场景的多个视角。由于图像扩散模型缺乏场景全局结构的先验知识,这类方法无法有效生成多样的 360 度视角,导致场景内主要的目标被多次重复生成,如图 1 的床和雕塑。
图像与视频合成、3D 视觉、人体行为识别、视觉与语言推理等研究方向论文最多,属于最热门的方向,体现当前学界对视觉生成、三维感知、人机交互等方向的高度重视。另外,多模态学习、以人为本的设计和自适应机器人可能构成人形机器人的未来。
天津大学与南京大学联合团队在CVPR 2024上发表了LPSNet项目,提出了一种端到端的无透镜成像下的3D人体姿态和形状估计框架,通过多尺度无透镜特征解码器和双头辅助监督机制,直接从编码后的无透镜成像数据中提取特征并提高姿态估计的准确度。