首个真正“能用”的LLM游戏Agent诞生!可实时高频决策,思维链还全程可见
首个真正“能用”的LLM游戏Agent诞生!可实时高频决策,思维链还全程可见不讲武德!游戏圈这回真是被AI抄家了。(doge)
不讲武德!游戏圈这回真是被AI抄家了。(doge)
近年来,大语言模型在算术、逻辑、多模态理解等任务上之所以取得显著进展,很大程度上依赖于思维链(CoT)技术。所谓 CoT,就是让模型在给出最终答案前,先生成一系列类似「解题步骤」的中间推理。 这种方式
在多模态大模型(MLLMs)领域,思维链(CoT)一直被视为提升推理能力的核心技术。然而,面对复杂的长程、视觉中心任务,这种基于文本生成的推理方式正面临瓶颈:文本难以精确追踪视觉信息的变化。形象地说,模型不知道自己想到哪一步了,对应图像是什么状态。
近期,以DeepEyes、Thymes为代表的类o3模型通过调用视觉工具,突破了传统纯文本CoT的限制,在视觉推理任务中取得了优异表现。
近日,上海人工智能实验室的研究团队提出了一种全新的后训练范式——RePro(Rectifying Process-level Reward)。这篇论文将推理的过程视为模型内部状态的优化过程,从而对如何重塑大模型的CoT提供了一个全新视角:
多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?
大模型推理的爆发,实际源于 scaling 范式的转变:从 train-time scaling 到 test-time scaling(TTS),即将更多的算力消耗部署在 inference 阶段。典型的实现是以 DeepSeek r1 为代表的 long CoT 方法:通过增加思维链的长度来获得答案精度的提升。那么 long CoT 是 TTS 的唯一实现吗?
在这片喧嚣和迷雾之中,我们迫切需要一个清晰的导航图。而Jason Wei正是提供这份地图的最佳人选之一。他现任Meta超级智能实验室(Meta Super Intelligence Labs)的研究科学家,此前在OpenAI工作了两年,o1研发的主导者,更早之前是Google Brain的科学家。
面向自动驾驶的多模态大模型在 “推理链” 上多以文字或符号为中介,易造成空间 - 时间关系模糊与细粒度信息丢失。FSDrive(FutureSightDrive)提出 “时空视觉 CoT”(Spatio-Temporal Chain-of-Thought),让模型直接 “以图思考”,用统一的未来图像帧作为中间推理步骤,联合未来场景与感知结果进行可视化推理。
蚂蚁通用人工智能中心自然语言组联合香港大学自然语言组(后简称“团队”)推出PromptCoT 2.0,要在大模型下半场押注任务合成。实验表明,通过“强起点、强反馈”的自博弈式训练,PromptCoT 2.0可以让30B-A3B模型在一系列数学代码推理任务上实现新的SOTA结果,达到和DeepSeek-R1-0528, OpenAI o3, Gemini 2.5 Pro等相当的表现。