
华为多路径推理破解大模型数学瓶颈,准确率超97%|ICML 2025
华为多路径推理破解大模型数学瓶颈,准确率超97%|ICML 2025大模型越来越大,通用能力越来越强,但一遇到数学、科学、逻辑这类复杂问题,还是常“翻车”。为破解这一痛点,华为诺亚方舟实验室提出全新高阶推理框架 ——思维森林(Forest-of-Thought,FoT)。
大模型越来越大,通用能力越来越强,但一遇到数学、科学、逻辑这类复杂问题,还是常“翻车”。为破解这一痛点,华为诺亚方舟实验室提出全新高阶推理框架 ——思维森林(Forest-of-Thought,FoT)。
虽然旋转位置编码(RoPE)及其变体因其长上下文处理能力而被广泛采用,但将一维 RoPE 扩展到具有复杂时空结构的视频领域仍然是一个悬而未决的挑战。
清华大学朱军教授团队与 NVIDIA Deep Imagination 研究组联合提出一种全新的视觉生成模型优化范式 —— 直接判别优化(DDO)。
在解决离线强化学习、图片逆问题等任务中,对生成模型的能量引导(energy guidance)是一种可控的生成方法,它构造灵活,适用于各种任务,且允许无额外训练条件生成模型。同时流匹配(flow matching)框架作为一种生成模型,近期在分子生成、图片生成等领域中已经展现出巨大潜力。
但在当今的深度 Transformer LLMs 中仍有其局限性,限制了信息在跨层间的高效传递。 彩云科技与北京邮电大学近期联合提出了一个简单有效的残差连接替代:多路动态稠密连接(MUltiway Dynamic Dense (MUDD) connection),大幅度提高了 Transformer 跨层信息传递的效率。
在大语言模型(LLM)加速进入法律、医疗、金融等高风险应用场景的当下,“安全对齐”不再只是一个选项,而是每一位模型开发者与AI落地者都必须正面应对的挑战。
LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 “智能体天团” 一样的多智能体系统已经见证了广泛的成功
清华大学软件学院发布生成式时序大模型——日晷(Sundial)。告别离散化局限,无损处理连续值,基于流匹配生成预测,缓解预训练模式坍塌,支持非确定性概率预测,为决策过程提供动态支持。
剑桥大学和范德夏尔实验室在 ICML 2024 上发表的立场论文,直接挑战了当前Agent开发的核心假设:我们一直在用错误的方式让Agent"自我改进"。
还在靠“开盲盒”选择大模型? 来自弗吉尼亚理工大学的研究人员推出了个选型框架LensLLM