
浅谈Llama3.1,从结构、训练过程、影响到数据合成
浅谈Llama3.1,从结构、训练过程、影响到数据合成Llama3.1系列模型的开源,真让大模型格局大震,指标上堪比最好的闭源模型比如GPT 4o和Claude3.5,让开源追赶闭源成为现实。
Llama3.1系列模型的开源,真让大模型格局大震,指标上堪比最好的闭源模型比如GPT 4o和Claude3.5,让开源追赶闭源成为现实。
小模型崛起了。
发布40天后,最强开源模型Llama 3.1 405B等来了微调版本的发布。但不是来自Meta,而是一个专注于开放模型的神秘初创Nous Research。
一口气生成2万字,大模型输出也卷起来了!
最近的论文表明,LLM等生成模型可以通过搜索来扩展,并实现非常显著的性能提升。另一个复现实验也发现,让参数量仅8B的Llama 3.1模型搜索100次,即可在Python代码生成任务上达到GPT-4o同等水平。
没有等来OpenAI的Q*/草莓项目的发布,一家名为MultiOn初创公司却抢先发布了名为Q的智能体。
把Llama 3.1 405B和Claude 3超大杯Opus双双送进小黑屋,你猜怎么着——
伴随大模型迭代速度越来越快,训练集群规模越来越大,高频率的软硬件故障已经成为阻碍训练效率进一步提高的痛点,检查点(Checkpoint)系统在训练过程中负责状态的存储和恢复,已经成为克服训练故障、保障训练进度和提高训练效率的关键。
Llama 3.1刚发布不久,Llama 4已完全投入训练中。 这几天,小扎在二季度财报会上称,Meta将用Llama 3的十倍计算量,训练下一代多模态Llama 4,预计在2025年发布。
如今一场席卷人工智能圈的“石油危机”已经出现,几乎每一家AI厂商都在竭力寻求新的语料来源,但再多的数据似乎也填不满AI大模型的胃口。更何况越来越多的内容平台意识到了手中数据的价值,纷纷开始敝帚自珍。为此,“合成数据”也成为了整个AI行业探索的新方向。