少即是多!10亿参数「小巨人」击败ChatGPT
少即是多!10亿参数「小巨人」击败ChatGPT只有10亿参数的xLAM-1B在特定任务中击败了LLM霸主:OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。上个月刚发布的苹果智能模型只有30亿参数,就连奥特曼都表示,我们正处于大模型时代的末期。那么,小语言模型(SLM)会是AI的未来吗?
只有10亿参数的xLAM-1B在特定任务中击败了LLM霸主:OpenAI的GPT-3.5 Turbo和Anthropic的Claude-3 Haiku。上个月刚发布的苹果智能模型只有30亿参数,就连奥特曼都表示,我们正处于大模型时代的末期。那么,小语言模型(SLM)会是AI的未来吗?
开源大语言模型(LLM)百花齐放,为了让它们适应各种下游任务,微调(fine-tuning)是最广泛采用的基本方法。基于自动微分技术(auto-differentiation)的一阶优化器(SGD、Adam 等)虽然在模型微调中占据主流,然而在模型越来越大的今天,却带来越来越大的显存压力。
只要仍使用英语训练 LLM 模型,美国就还有优势。
当前大语言模型(LLM)的评估方法受到数据污染问题的影响,导致评估结果被高估,无法准确反映模型的真实能力。北京大学等提出的KIEval框架,通过知识基础的交互式评估,克服了数据污染的影响,更全面地评估了模型在知识理解和应用方面的能力。
「微调你的模型,获得比GPT-4更好的性能」不只是说说而已,而是真的可操作。最近,一位愿意动手的ML工程师就把几个开源LLM调教成了自己想要的样子。
本文研究发现大语言模型在持续预训练过程中出现目标领域性能先下降再上升的现象。
人工智能(AI)在过去十年里取得了长足进步,特别是在自然语言处理和计算机视觉领域。然而,如何提升 AI 的认知能力和推理能力,仍然是一个巨大的挑战。
最近,Hacker News热榜上出现了一篇「声讨」LangChain的技术文章,得到了评论区网友的一致呼应。去年还火遍LLM圈的LangChain,为什么口碑逆转了?
LLM能否解决「狼-山羊-卷心菜」经典过河难题?最近,菲尔兹奖得主Timothy Gowers分享了实测GPT-4o的过程,模型在最简单的题目上竟然做错了,甚至网友们发现,就连Claude 3.5也无法幸免。
Meta搞了个很牛的LLM Compiler,帮助程序员更高效地写代码。