“可以肯定,明天对于AI开发者而言是个大日子。”
“可以肯定,明天对于AI开发者而言是个大日子。”
最近,开源大模型社区再次「热闹」了起来,主角是 AI 写作初创公司 HyperWrite 开发的新模型 Reflection 70B。
近日,Mamba方面又搞出了有意思的研究:来自康奈尔、普林斯顿等机构的研究人员成功将Llama提炼成了Mamba模型,并且设计了新的推测解码算法,加速了模型的推理。
Transformer 在深度学习领域取得巨大成功的关键是注意力机制。注意力机制让基于 Transformer 的模型关注与输入序列相关的部分,实现了更好的上下文理解。然而,注意力机制的缺点是计算开销大,会随输入规模而二次增长,Transformer 也因此难以处理非常长的文本。
今天一大早,Meta 便秀了一把「Llama 系列模型在开源领域取得的成绩」,包括如下:
诞生一年半,Llama家族早已稳坐开源界头把交椅。最新报告称,Llama全球下载量近3.5亿,是去年同期的10倍。而模型开源让每个人最深体会是,token价格一降再降。
最近,Meta的多个工程团队联合发表了一篇论文,描述了在引入基于GPU的分布式训练时,他们如何为其「量身定制」专用的数据中心网络。
你给翻译翻译,什么是开源?
Meta的开源大模型Llama 3在市场上遇冷,进一步加剧了大模型开源与闭源之争的关注热度。
微调的所有门道,都在这里了。