大型语言模型(LLMs)虽然在适应新任务方面取得了长足进步,但它们仍面临着巨大的计算资源消耗,尤其在复杂领域的表现往往不尽如人意。
大型语言模型(LLMs)虽然在适应新任务方面取得了长足进步,但它们仍面临着巨大的计算资源消耗,尤其在复杂领域的表现往往不尽如人意。
比LoRA更高效的模型微调方法来了——
“FLUX在线版”,新增一系列重磅功能!
低秩适应(Low-Rank Adaptation,LoRA)通过可插拔的低秩矩阵更新密集神经网络层,是当前参数高效微调范式中表现最佳的方法之一。此外,它在跨任务泛化和隐私保护方面具有显著优势。
为了让大模型在特定任务、场景下发挥更大作用,LoRA这样能够平衡性能和算力资源的方法正在受到研究者们的青睐。
大模型应用开卷,连一向保守的苹果,都已释放出发展端侧大模型的信号。
美国东北大学的计算机科学家 David Bau 非常熟悉这样一个想法:计算机系统变得如此复杂,以至于很难跟踪它们的运行方式。
本文介绍了香港科技大学(广州)的一篇关于大模型高效微调(LLM PEFT Fine-tuning)的文章「Parameter-Efficient Fine-Tuning with Discrete Fourier Transform」
大数据巨头Databricks与哥伦比亚大学最新研究发现,在数学和编程任务上,LoRA干不过全量微调。
堂堂开源之王Llama 3,原版上下文窗口居然只有……8k,让到嘴边的一句“真香”又咽回去了。