
AI Agent组团搞事:在你常刷的App里,舆论操纵、电商欺诈正悄然上演
AI Agent组团搞事:在你常刷的App里,舆论操纵、电商欺诈正悄然上演近日,上海交大和上海人工智能实验室的研究发现,AI 的风险正从个体失控转向群体性的恶意共谋(Collusion)——即多个智能体秘密协同以达成有害目标。Agent 不仅可以像人类团队一样协作,甚至在某些情况下,还会展现出比人类更高效、更隐蔽的「团伙作案」能力。
近日,上海交大和上海人工智能实验室的研究发现,AI 的风险正从个体失控转向群体性的恶意共谋(Collusion)——即多个智能体秘密协同以达成有害目标。Agent 不仅可以像人类团队一样协作,甚至在某些情况下,还会展现出比人类更高效、更隐蔽的「团伙作案」能力。
在深度学习模型的推理与训练过程中,绝大部分计算都依赖于底层计算内核(Kernel)来执行。计算内核是运行在硬件加速器(如 GPU、NPU、TPU)上的 “小型高性能程序”,它负责完成矩阵乘法、卷积、归一化等深度学习的核心算子运算。
告别Next-token,现在模型微调阶段就能直接多token预测!
大语言模型(Large Language Models,LLMs)技术的迅猛发展,正在深刻重塑医疗行业。医疗领域正成为这一前沿技术的 “新战场” 之一。大模型具备强大的文本理解与生成能力,能够快速读取医学文献、解读病历记录,甚至基于患者表述生成初步诊断建议,有效辅助医生提升诊断的准确性与效率。
本文主要介绍 xML 团队的论文:Discrete Diffusion in Large Language and Multimodal Models: A Survey。
三个前沿AI能融合成AGI吗?Sakana AI提出Multi-LLM AB-MCTS方法,整合o4-mini、Gemini-2.5-Pro与DeepSeek-R1-0528模型,在推理过程中动态协作,通过试错优化生成过程,有效融合群体AI智慧。
但在当今的深度 Transformer LLMs 中仍有其局限性,限制了信息在跨层间的高效传递。 彩云科技与北京邮电大学近期联合提出了一个简单有效的残差连接替代:多路动态稠密连接(MUltiway Dynamic Dense (MUDD) connection),大幅度提高了 Transformer 跨层信息传递的效率。
2022 年底,前 Stripe 亚太区业务负责人 Noah Pepper 创立了 Multiplier,这家初创公司最初旨在向税务会计师销售软件。
原生并行生成不仅仅是加速,它是我们对 LLM 推理思考方式的根本转变。
Era of Experience 这篇文章中提到:如果要实现 AGI, 构建能完成复杂任务的通用 agent,必须借助“经验”这一媒介,这里的“经验”就是指强化学习过程中模型和 agent 积累的、人类数据集中不存在的高质量数据。