
它来了,剑桥最新LLM提示词压缩调查报告
它来了,剑桥最新LLM提示词压缩调查报告别说Prompt压缩不重要,你可以不在乎Token成本,但总要考虑内存和LLM响应时间吧?一个显著的问题逐渐浮出水面:随着任务复杂度增加,提示词(Prompt)往往需要变得更长,以容纳更多详细需求、上下文信息和示例。这不仅降低了推理速度,还会增加内存开销,影响用户体验。
别说Prompt压缩不重要,你可以不在乎Token成本,但总要考虑内存和LLM响应时间吧?一个显著的问题逐渐浮出水面:随着任务复杂度增加,提示词(Prompt)往往需要变得更长,以容纳更多详细需求、上下文信息和示例。这不仅降低了推理速度,还会增加内存开销,影响用户体验。
在人工智能技术快速发展的今天,大语言模型(LLM)已经展现出惊人的能力。然而,让这些模型生成规范的结构化输出仍然是一个难以攻克的技术难题。不论是在开发自动化工具、构建特定领域的解决方案,还是在进行开发工具集成时,都迫切需要LLM能够产生格式严格、内容可靠的输出。
最近,来自德国奥尔登堡大学计算智能实验室的研究人员Oliver Kramer和Jill Baumann提出了一种创新的方法——认知提示(Cognitive Prompting),通过模拟人类认知过程来提升LLM的问题解决能力。这项研究将在ICLR 2025会议上发表,本文将为各位读者朋友详细解读这一突破性的技术。
众所周知,人类的本质是复读机。 我们遵循复读机的自我修养:敲黑板,划重点,重要的事情说三遍。 but,事实上同样的方法对付AI也有奇效!
一个「汉语新解」的 prompt 突然爆火。 在 Claude 3.5 里使用这个 prompt 后,输入一个中文词语,AI 会生成一张这个词语的吐槽解释图。Prompt 本身的写法很神奇,使用了伪代码的写法,也让很多人意识到,原来 prompt 可以这么写。
OpenAI博士级别的智能,真的实现了!一位UCI物理学博士实测o1,发现自己用时1年完成的博士论文代码,竟被AI在1个小时之内实现了。
o1消息满天飞。
前几天我在X上看到了一个非常离谱的Prompt,不仅给我看懵了,也给几百万网友看懵逼了。
学会与 AI 对话。 这两天,一段 Prompt 在网上火得一塌糊涂。 将Prompt 输入 Claude Sonnet 模型之后,它就能将一个寻常词汇剖析得淋漓尽致。
汉语新解这个提示词作用是什么呢?就是每当你输入一个词,它不是简单地告诉你词的意思,而是以一种独特的方式重新诠释这个词,幽默中带出深刻的批判,讽刺意味拉满,同时还会生成一张特别有设计感的 SVG 卡片。