英伟达拿出推理版VLA:Alpamayo-R1让自动驾驶AI更会动脑子
英伟达拿出推理版VLA:Alpamayo-R1让自动驾驶AI更会动脑子当今自动驾驶模型越来越强大,摄像头、雷达、Transformer 网络一齐上阵,似乎什么都「看得见」。但真正的挑战在于:模型能否像人一样「想明白」为什么要这么开?
当今自动驾驶模型越来越强大,摄像头、雷达、Transformer 网络一齐上阵,似乎什么都「看得见」。但真正的挑战在于:模型能否像人一样「想明白」为什么要这么开?
大模型推理的爆发,实际源于 scaling 范式的转变:从 train-time scaling 到 test-time scaling(TTS),即将更多的算力消耗部署在 inference 阶段。典型的实现是以 DeepSeek r1 为代表的 long CoT 方法:通过增加思维链的长度来获得答案精度的提升。那么 long CoT 是 TTS 的唯一实现吗?
“What is meant often goes far beyond what is said, and that is what makes conversation possible.” ——H. P. Grice
近日,微博正式发布首个自研开源大模型VibeThinker,这个仅拥有15亿参数的“轻量级选手”,在国际顶级数学竞赛基准测试上击败了参数量是其数百倍的、高达6710亿的DeepSeek R1模型。
在计算机科学领域, CSRankings 曾被视为一次划时代的改进。它摒弃了早期诸如 USNews 那样依赖调查问卷的主观排名体系,转而以论文发表数量这一客观指标来评估各大学的科研实力。
2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
比Nano Banana更擅长P细节的图像编辑模型来了,还是更懂中文的那种。
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。