当AI重新定义「科研影响力」:一场关于CSRankings的反思与重塑
当AI重新定义「科研影响力」:一场关于CSRankings的反思与重塑在计算机科学领域, CSRankings 曾被视为一次划时代的改进。它摒弃了早期诸如 USNews 那样依赖调查问卷的主观排名体系,转而以论文发表数量这一客观指标来评估各大学的科研实力。
在计算机科学领域, CSRankings 曾被视为一次划时代的改进。它摒弃了早期诸如 USNews 那样依赖调查问卷的主观排名体系,转而以论文发表数量这一客观指标来评估各大学的科研实力。
2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
比Nano Banana更擅长P细节的图像编辑模型来了,还是更懂中文的那种。
这篇论文提出了一种颠覆性的协作模式,即通过强化学习训练一个“小模型”作为智能代理(Agent),让它自动学会如何写出完美的Prompt,一步步引导任何一个“大模型”完成复杂推理,实现了真正的“AI指挥AI”。
大模型推理到底要不要「长篇大论」?过去一年,OpenAI o 系列、DeepSeek-R1、Qwen 等一系列推理模型,把「长链思维」玩到极致:答案更准了,但代价是推理链越来越长、Token 消耗爆炸、响应速度骤降。
今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。
在机器人与智能体领域,一个老大难问题是:当你让机器人 “把黄碗放进白色空篮子” 或 “从微波炉里把牛奶取出来放到餐桌上” 时,它不仅要看懂环境,更要解释指令、规划路径 / 可操作区域,并把这些推理落实为准确的动作。
王自如撑场,雷鸟上桌。 刚刚,雷鸟发布了全球首个HDR10 AR眼镜—— 雷鸟Air 4,1599元起售。 大家不知道HDR10没关系,咱直接看画质对比就完事儿:AR眼镜摇身一变,开始玩专业摄影那套了。甚至连好久不出面儿的王自如也被拉来做评测了,不禁感慨,这是重拾旧业啊:
时隔两月,Baichuan-M2 Plus重磅出世!成为业内首个循证增强的医疗大模型,幻觉要比DeepSeek-R1低3倍,可信度比肩资深临床专家。新模型将「循证医学」理念深度融入训练和推理,通过首创「六源循证范式」,模拟人类医生思维,有效辨别不同层级医学证据、评估其可靠性,并在回答中优先引用高等级证据。
年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。