
隐式推理,继CoT思维链之后,LLM的下一个技术奇点系统性综述来了|港科大最新
隐式推理,继CoT思维链之后,LLM的下一个技术奇点系统性综述来了|港科大最新您对“思维链”(Chain-of-Thought)肯定不陌生,从最早的GPT-o1到后来震惊世界的Deepseek-R1,它通过让模型输出详细的思考步骤,确实解决了许多复杂的推理问题。但您肯定也为它那冗长的输出、高昂的API费用和感人的延迟头疼过,这些在产品落地时都是实实在在的阻碍。
您对“思维链”(Chain-of-Thought)肯定不陌生,从最早的GPT-o1到后来震惊世界的Deepseek-R1,它通过让模型输出详细的思考步骤,确实解决了许多复杂的推理问题。但您肯定也为它那冗长的输出、高昂的API费用和感人的延迟头疼过,这些在产品落地时都是实实在在的阻碍。
随着DeepSeek R1、Kimi K2和DeepSeek V3.1混合专家(MoE)模型的相继发布,它们已成为智能前沿领域大语言模型(LLM)的领先架构。由于其庞大的规模(1万亿参数及以上)和稀疏计算模式(每个token仅激活部分参数而非整个模型),MoE式LLM对推理工作负载提出了重大挑战,显著改变了底层的推理经济学。
不止贴「AI生成」标签
不卷参数的专业模型,会不会被通用大模型取代? 在医疗领域,这个疑问正在被打破。
近期,多模态大模型在图像问答与视觉理解等任务中进展迅速。随着 Vision-R1 、MM-Eureka 等工作将强化学习引入多模态推理,数学推理也得到了一定提升。
继Kaggle Game Arena的淘汰赛后,国际象棋积分赛成果出炉!OpenAI o3以人类等效Elo 1685分傲视群雄,而Grok 4和Gemini 2.5 Pro紧随其后。DeepSeek R1和GPT-4.1、Claude Sonnet-4、Claude Opus-4并列第五。
DeepSeek-V3.1官宣了,作为首款「混合推理」模型,将开启智能体新时代。新模型共有671B参数,编码实力碾压DeepSeek-R1、Claude 4 Opus,登顶编程开源第一。
AI能像科幻电影中的先知一样预测未来吗?一个名为「Prophet Arena」的全新基准测试,正通过预测真实世界事件来评估AI的「预言」能力。
近年来,AI大模型在数学计算、逻辑推理和代码生成领域的推理能力取得了显著突破。特别是DeepSeek-R1等先进模型的出现,可验证强化学习(RLVR)技术展现出强大的性能提升潜力。
用过 DeepSeek-R1 等推理模型的人,大概都遇到过这种情况:一个稍微棘手的问题,模型像陷入沉思一样长篇大论地推下去,耗时耗算力,结果却未必靠谱。现在,我们或许有了解决方案。