
Contextual AI:从幻觉到可信,钻研RAG架构解决企业级AI应用落地最大痛点
Contextual AI:从幻觉到可信,钻研RAG架构解决企业级AI应用落地最大痛点RAG(检索增强生成)作为解决大模型"幻觉"和知识时效性问题的关键技术,已成为企业AI应用的主流架构。Contextual AI由RAG技术的创始研究者组建,致力于开发能应对复杂知识密集型任务的专业智能体。
RAG(检索增强生成)作为解决大模型"幻觉"和知识时效性问题的关键技术,已成为企业AI应用的主流架构。Contextual AI由RAG技术的创始研究者组建,致力于开发能应对复杂知识密集型任务的专业智能体。
大家好,我是袋鼠帝。 最近有一件挺有意思的事,时间拉回到6月底,我收到了一个官方邀请,来自百度。
在信息爆炸的时代,传统关键词搜索已难以满足复杂知识需求。最新研究提出Agentic Deep Research
谁曾想,AI竟能实时生成GTA级大作。刚刚,谷歌、英伟达等机构联手,震撼发布全球首款AI原生UGC游戏引擎——Mirage,没有预设关卡,一句话即生游戏,超长十分钟沉浸式体验
2023年至今,检索增强生成(RAG)经历了从备受瞩目到逐渐融入智能体生态的转变。尽管有人宣称“RAG已死”,但其在企业级应用中的重要性依然无可替代。RAG正从独立框架演变为智能体生态的关键子模块,2025年将在多模态、代理融合、行业定制化等领域迎来新的突破。
这两天读到开源的代码 Agent,Cline 团队的一篇博客,《Why Cline Doesn't Index Your Codebase (And Why That's a Good Thing) 》,做了一些整理和探索,来分享一下这篇博客内容。
最近,由香港大学黄超教授团队发布的开源项目「一体化的多模态RAG框架」RAG-Anything,有效解决了传统RAG的技术局限,实现了「万物皆可RAG」的处理能力。
随着大模型能力的突破,“可调用工具的智能体”已经迅速从实验室概念走向应用落地,成为继大模型之后的又一爆发点。
突破传统检索增强生成(RAG)技术的单一文本局限,实现对文档中文字、图表、表格、公式等复杂内容的统一智能理解。
AI 时代,你可能听说过提示词工程、RAG、记忆等术语。但是很少有人提及上下文工程(context engineering)。