
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍
像人类一样在批评中学习成长,1317条评语让LLaMA2胜率飙升30倍有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
有的大模型对齐方法包括基于示例的监督微调(SFT)和基于分数反馈的强化学习(RLHF)。然而,分数只能反应当前回复的好坏程度,并不能明确指出模型的不足之处。相较之下,我们人类通常是从语言反馈中学习并调整自己的行为模式。
过去几个月中,随着 GPT-4V、DALL-E 3、Gemini 等重磅工作的相继推出,「AGI 的下一步」—— 多模态生成大模型迅速成为全球学者瞩目的焦点。
这两天Steam上突然出现了一款爆火的现象级游戏《幻兽帕鲁(Palworld)》。发售没几天就直接冲到了Steam史上玩家在线排行榜第2,超过了CS2等一众经典老游戏。
大模型在极大的提高工作效率的同时,也将一些隐患带入到人们的生活中,比如擦边内容、暴力诱导、种族歧视、虚假和有害信息等。
复旦团队进一步挖掘 RLHF 的潜力,重点关注奖励模型(Reward Model)在面对实际应用挑战时的表现和优化途径。
微软和 AI 初创公司 Inworld 达成合作,将引入基于 AI 的“角色引擎”及“Copilot 助理”,为开发者提供一系列开发工具,以创建更真实、动态的 NPC。
OpenAI认为,未来十年来将诞生超过人类的超级AI系统。但是,这会出现一个问题,即基于人类反馈的强化学习技术将终结。
多模态技术是 AI 多样化场景应用的重要基础,多模态大模型(MLLM)展现出了优秀的多模态信息理解和推理能力,正成为人工智能研究的前沿热点。上周,谷歌发布 AI 大模型 Gemini,据称其性能在多模态任务上已全面超越 OpenAI 的 GPT-4V,再次引发行业的广泛关注和热议。
多模态大语言模型展现了强大的图像理解和推理能力。但要让它们基于当前观测来对未来事件进行预测推理仍然非常困难。
随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。