通用机器人模型,目前最大的障碍便是「异构性」。
通用机器人模型,目前最大的障碍便是「异构性」。
挑战Transformer,MIT初创团队推出LFM(Liquid Foundation Model)新架构模型爆火。
就在刚刚,MIT系初创公司Liquid AI团队官宣:推出首批多模态非Transformer模型——液体基础模型LFM。
一个受线虫启发的全新架构,三大「杯型」均能实现 SOTA 性能,资源高度受限环境也能部署。移动机器人可能更需要一个虫子的大脑。
取代现有计算架构。 人工智能(AI)硬件有望彻底被颠覆,在计算速度和能效方面实现前所未有的改进。
随OpenAI爆火的CoT,已经引发了大佬间的激战!谷歌DeepMind首席科学家Denny Zhou拿出一篇ICLR 2024论文称:CoT可以让Transformer推理无极限。但随即他就遭到了田渊栋和LeCun等的质疑。最终,CoT会是通往AGI的正确路径吗?
Transformer 是现代深度学习的基石。传统上,Transformer 依赖多层感知器 (MLP) 层来混合通道之间的信息。
注意力是 Transformer 架构的关键部分,负责将每个序列元素转换为值的加权和。将查询与所有键进行点积,然后通过 softmax 函数归一化,会得到每个键对应的注意力权重。
坐拥世界最大的搜索业务,谷歌一直独步于硅谷。搜索所带来的丰厚广告收入,让两位创始人谢尔盖・布林 (Sergey Brin) 和拉里・(Larry Page)可以退居二线,安心享受生活。
基于图神经网络的方法被广泛应用于不同问题并且显著推动了相关领域的进步,包括但不限于数据挖掘、计算机视觉和自然语言处理。考虑到图神经网络已经取得了丰硕的成果,一篇全面且详细的综述可以帮助相关研究人员掌握近年来计算机视觉中基于图神经网络的方法的进展,以及从现有论文中总结经验和产生新的想法。