AI资讯新闻榜单内容搜索-Transforme

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
搜索: Transforme
LSTM之父:我也是注意力之父!1991年就发表线性复杂度,遥遥领先Transformer 26年

LSTM之父:我也是注意力之父!1991年就发表线性复杂度,遥遥领先Transformer 26年

LSTM之父:我也是注意力之父!1991年就发表线性复杂度,遥遥领先Transformer 26年

Transformer模型自2017年问世以来,已成为AI领域的核心技术,尤其在自然语言处理中占据主导地位。然而,关于其核心机制“注意力”的起源,学界存在争议,一些学者如Jürgen Schmidhuber主张自己更早提出了相关概念。

来自主题: AI技术研报
5874 点击    2024-12-13 14:24
被忽略的起点?Karpathy揭秘最初的注意力论文被Transformer光芒掩盖的故事

被忽略的起点?Karpathy揭秘最初的注意力论文被Transformer光芒掩盖的故事

被忽略的起点?Karpathy揭秘最初的注意力论文被Transformer光芒掩盖的故事

几个小时前,著名 AI 研究者、OpenAI 创始成员之一 Andrej Karpathy 发布了一篇备受关注的长推文,其中分享了注意力机制背后一些或许少有人知的故事。

来自主题: AI技术研报
7304 点击    2024-12-04 16:39
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题

30多年的数学猜想首次获得了进展!Meta等学者提出的PatternBoost,使用Transformer构造了一个反例,反驳了一个已悬而未决30年的猜想。是否所有数学问题都适合机器学习技术?这样的未来太令人期待了。

来自主题: AI技术研报
5870 点击    2024-11-14 10:46
微软清华改进Transformer:用降噪耳机原理升级注意力,一作在线答疑

微软清华改进Transformer:用降噪耳机原理升级注意力,一作在线答疑

微软清华改进Transformer:用降噪耳机原理升级注意力,一作在线答疑

Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。

来自主题: AI技术研报
3126 点击    2024-11-03 14:32
陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

陶哲轩神预言!Transformer破解百年三体难题,凭数学直觉找到李雅普诺夫函数

Transformer解决了三体问题?Meta研究者发现,132年前的数学难题——发现全局李雅普诺夫函数,可以被Transformer解决了。「我们不认为Transformer是在推理,它可能是出于对数学问题的深刻理解,产生了超级直觉。」AI可以搞基础数学研究了,陶哲轩预言再成真。

来自主题: AI技术研报
9235 点击    2024-10-28 17:29
132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

132年未解开的李雅普诺夫函数谜题,被Symbolic Transformer攻克了

牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。

来自主题: AI技术研报
3585 点击    2024-10-20 16:41
Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

Jurgen、曼宁等大佬新作:MoE重塑6年前的Universal Transformer,高效升级

7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。

来自主题: AI技术研报
8453 点击    2024-10-19 14:29
图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

图灵奖得主Yoshua Bengio新作:Were RNNs All We Needed?

自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。

来自主题: AI技术研报
3897 点击    2024-10-14 15:42
NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

NeurIPS 2024 | Transformer长度外推,全新位置编码DAPE大幅提升模型性能

在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。

来自主题: AI技术研报
6182 点击    2024-10-12 14:29