Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。
Transformer自问世后就大放异彩,但有个小毛病一直没解决: 总爱把注意力放在不相关的内容上,也就是信噪比低。 现在微软亚研院、清华团队出手,提出全新改进版Differential Transformer,专治这个老毛病,引起热议。
Transformer解决了三体问题?Meta研究者发现,132年前的数学难题——发现全局李雅普诺夫函数,可以被Transformer解决了。「我们不认为Transformer是在推理,它可能是出于对数学问题的深刻理解,产生了超级直觉。」AI可以搞基础数学研究了,陶哲轩预言再成真。
牛顿没解决的问题,AI给你解决了? AI的推理能力一直是研究的焦点。作为最纯粹、要求最高的推理形式之一,能否解决高级的数学问题,无疑是衡量语言模型推理水平的一把尺。
7 年前,谷歌在论文《Attention is All You Need》中提出了 Transformer。就在 Transformer 提出的第二年,谷歌又发布了 Universal Transformer(UT)。它的核心特征是通过跨层共享参数来实现深度循环,从而重新引入了 RNN 具有的循环表达能力。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
随着诺贝尔物理学奖颁给了「机器学习之父」Geoffrey Hinton,另一个借鉴物理学概念的模型架构也横空出世——微软清华团队的最新架构Differential Transformer,从注意力模块入手,实现了Transformer的核心能力提升。
Transformer 的强大实力已经在诸多大型语言模型(LLM)上得到了证明,但该架构远非完美,也有很多研究者致力于改进这一架构,比如机器之心曾报道过的 Reformer 和 Infini-Transformer。
Transformer计算,竟然直接优化到乘法运算了。MIT两位华人学者近期发表的一篇论文提出:Addition is All You Need,让LLM的能耗最高降低95%。
通用机器人模型,目前最大的障碍便是「异构性」。