
腾讯混元、英伟达都发混合架构模型,Mamba-Transformer要崛起吗?
腾讯混元、英伟达都发混合架构模型,Mamba-Transformer要崛起吗?在过去的一两年中,Transformer 架构不断面临来自新兴架构的挑战。
在过去的一两年中,Transformer 架构不断面临来自新兴架构的挑战。
首个基于混合Mamba架构的超大型推理模型来了!就在刚刚,腾讯宣布推出自研深度思考模型混元T1正式版,并同步在腾讯云官网上线。对标o1、DeepSeek R1之外,值得关注的是,混元T1正式版采用的是Hybrid-Mamba-Transformer融合模式——
何恺明LeCun联手:Transformer不要归一化了,论文已入选CVPR2025。
Transformer架构迎来历史性突破!刚刚,何恺明LeCun、清华姚班刘壮联手,用9行代码砍掉了Transformer「标配」归一化层,创造了性能不减反增的奇迹。
Transformer 很成功,更一般而言,我们甚至可以将(仅编码器)Transformer 视为学习可交换数据的通用引擎。由于大多数经典的统计学任务都是基于独立同分布(iid)采用假设构建的,因此很自然可以尝试将 Transformer 用于它们。
当DeepSeek引发业界震动时,元始智能创始人彭博正专注于一个更宏大的愿景。
进入到 2025 年,视频生成(尤其是基于扩散模型)领域还在不断地「推陈出新」,各种文生视频、图生视频模型展现出了酷炫的效果。其中,长视频生成一直是现有视频扩散的痛点。
谷歌首席科学家Jeff Dean与Transformer作者Noam Shazeer在一场访谈中不仅揭秘了让模型速度提升三倍的低精度计算技术,分享了「猫神经元」等早期AI突破的背后故事,还大胆畅想了AI处理万亿级别Token、实现「1000万倍工程师」的可能性。
一篇报道,在AI圈掀起轩然大波。文中引用了近2年前的论文直击大模型死穴——Transformer触及天花板,却引来OpenAI研究科学家的紧急回应。谁能想到,一篇于2023年发表的LLM论文,竟然在一年半之后又「火」了。
SANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。